Skip to main content

Proteomics: Applications and Advances

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Proteomics provides a snapshot of gene expression in a particular cell, tissue, or organ at the time of sampling. Since the proteome is the link between the genotype and phenotype of an organism, characterization of the proteome provides information regarding the adaptability and physiology of an organism in relation to its environment. Proteomics is proving invaluable as a tool in marine biotechnology, where it has been employed to identify and characterize unique bioactive gene products, characterize the function and regulation of metabolic processes, elucidate marine biodiversity, and identify biomarkers of pollution and disease. Aquaculture of commercially important marine fish and shellfish has benefitted through a proteomics approach to address issues relating to disease, larviculture, and animal production in order to improve the profitability and sustainability of the industry. This chapter describes a wide variety of studies that illustrate the application of proteomics in marine biotechnology. The rapid improvements in proteomics technology expected over the next few years are guaranteed to result in dramatic advances in our understanding and use of the valuable resources provided by the marine environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2D-DIGE:

two-dimensional difference in-gel electrophoresis

ABC:

ATP-binding cassette

AKG:

α-ketoglutarate

ATP:

adenosine triphosphate

BPA:

bisphenol A

Cd:

cadmium

CyDyes:

cyanine dyes

DNA:

deoxyribonucleic acid

DSP:

diarrhetic shellfish poisoning

ECP:

extracellular product

EDC:

endocrine disrupting compound

ESI:

electrospray ionization

HAB:

harmful algal bloom

HSC70:

heat-shock cognate protein 70

HSDH4:

17β-hydroxysteroid dehydrogenase type 4

ICR:

imprinting control region

IPG:

immobilized pH gradient

InHA:

immune inhibitor A precursor

KSR1:

kinase suppressor of Ras1

LC-ESI-MS:

liquid chromatography electrospray ionization mass spectrometry

LC:

liquid chromatography

LPS:

lipopolysaccharide

MALDI:

mass spectrometry using assisted laser desorption ionization

MA:

maslinic acid

MS/MS:

tandem mass spectrometry

MS:

mass spectroscopy

MeHg:

methylmercury

NADH:

nicotiamide adenine dinucleotide

NADPH:

nicotinamide adenine dinucleotide phosphate

NCBI:

National Center for Biotechnology Information

NF:

nuclear factor

NP:

nonylphenol mixture

OA:

ocean acidification

PAGE:

polyacrylamide gel electrophoresis

PCA:

principal component analysis

PCNA:

proliferative cell nuclear antigen

PES:

protein expression signature

PM:

petrosaspongiolide M

PP:

protein phosphatase

PSP:

paralytic shellfish poisoning

PST:

paralytic shellfish poisoning toxin

ProLuCID:

name of a tandem mass spectrabased protein identification program

RNA:

ribonucleic acid

ROS:

reactive oxygen species

SDS-PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecyl sulfate

SELDI:

surface enhanced laser desorption/ionization

SEQUEST:

tandem mass spectrometry data analysis program used for protein identification

TOF:

time of flight

Wap65:

warm temperature acclimation-related protein 65

iTRAQ:

isobaric tags relative absolute quantification

mRNA:

messenger RNA

pI:

isoelectric point

ww:

wet weight

References

  1. Sequencing consortium: Genome sequence of the nematode C. elegans: A platform for investigating biology, Science 282(5396), 2012–2018 (1998)

    Article  Google Scholar 

  2. C. May, F. Brosseron, P. Chartowski, C. Schumbrutzki, B. Schoenebeck, K. Marcus:Data Mining in Proteomics: From Standards to Applications, Methods in Molecular Biology, Vol. 696, ed. by M. Hamacher, M. Eisenacher, C. Stephan (Humana, Totowa 2011) pp. 3–26

    Chapter  Google Scholar 

  3. P.M. Rodrigues, T.S. Silva, J. Dias, F. Jessen: PROTEOMICS in aquaculture: Applications and trends, J. Proteomics 75(14), 4325–4345 (2012)

    Article  CAS  Google Scholar 

  4. M. Slattery, S. Ankisetty, J. Corrales, K.E. Marsh-Hunkin, D.J. Gochfeld, K.L. Willett, J.M. Rimoldi: Marine proteomics: A critical assessment of an emerging technology, J. Nat. Prod. 75(10), 1833–1877 (2012), DOI: 10.1021/np300366a

    Article  CAS  Google Scholar 

  5. U.K. Laemmli: Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227(5259), 680–685 (1970)

    Article  CAS  Google Scholar 

  6. W. Weiss, A. Görg: High-resolution two-dimensional electrophoresis. In: Proteomics, Methods in Molecular Biology, Vol. 564, ed. by J. Reinders, A. Sickmann (Humana, Totowa 2009) pp. 13–32

    Chapter  Google Scholar 

  7. F. Chevalier: Highlights on the capacities of gel-based proteomics, Proteome Sci. 8(1), 23–33 (2010)

    Article  CAS  Google Scholar 

  8. W. Weiss, F. Weiland, A. Görg: Protein detection and quantitation technologies for gel-based proteome analysis. In: Proteomics, Methods in Molecular Biology, Vol. 564, ed. by J. Reinders, A. Sickmann (Humana, Totowa 2009) pp. 59–82

    Chapter  Google Scholar 

  9. E. Kolker, R. Higdon, J.M. Hogan: Protein identification and expression analysis using mass spectrometry, Trends Microbiol. 14(5), 229–235 (2006)

    Article  CAS  Google Scholar 

  10. A. Schmidt, N. Gehlenborg, B. Bodenmiller, L.N. Mueller, D. Campbell, M. Mueller, R. Aebersold, B. Domon: An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures, Mol. Cell. Proteomics 7(11), 2138–2150 (2008)

    Article  CAS  Google Scholar 

  11. C. Fenselau: A review of quantitative methods for proteomic studies, J. Chromatogr. B 855(1), 14–20 (2007)

    Article  CAS  Google Scholar 

  12. H. Wang, S. Alvarez, L.M. Hicks: Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering, J. Proteome Res. 11(1), 487–501 (2012)

    Article  CAS  Google Scholar 

  13. C. Piñeiro, J. Barros-Velázquez, J. Vázquez, A. Figueras, J.M. Gallardo: Proteomics as a tool for the investigation of seafood and other marine products, J. Proteome Res. 2(2), 127–135 (2003)

    Article  CAS  Google Scholar 

  14. J. Querellou, J. Cadoret, M.J. Allen, J. Collén: Marine biotechnology. In: Advances in Marine Genomics 1, Introduction to Marine Genomics, ed. by J.M. Cock, K. Tessmar-Raible, C. Boyen, F. Viard (Springer, Heidelberg, London, New York, 2010) pp. 287–313

    Chapter  Google Scholar 

  15. Food and Agriculture Organization of the United Nations: The State of World Fisheries and Aquaculture 2010 (FAO, Rome 2010)

    Google Scholar 

  16. L.E. Fleming, K. Broad, A. Clement, E. Dewailly, S. Elmir, A. Knap, S.A. Pomponi, S. Smith, H.S. Gabriele, P. Walsh: Oceans and human health: Emerging public health risks in the marine environment, Mar. Pollut. Bull. 53(10–12), 545–560 (2006)

    Article  CAS  Google Scholar 

  17. R. Callaway, A.P. Shinn, S.E. Grenfell, J.E. Bron, G. Burnell, E.J. Cook, M. Crumlish, S. Culloty, K. Davidson, R.P. Ellis, K.J. Flynn, C. Fox, D.M. Green, G.C. Hays, A.D. Hughes, E. Johnston, C.D. Lowe, I. Lupatsch, S. Malham, A.F. Mendzil, T. Nickell, T. Pickerell, A.F. Rowley, M.S. Stanley, D.R. Tocher, J.F. Turnbull, G. Webb, E. Wootton, R.J. Shields: Review of climate change impacts on marine aquaculture in the UK and Ireland, Aquat. Conversat.: Mar. Freshw. Ecosyst. 22, 389–421 (2012)

    Article  Google Scholar 

  18. C. Piñeiro, B. Cañas, M. Carrera: The role of proteomics in the study of the influence of climate change on seafood products, Food Res. Int. 43(7), 1791–1802 (2010)

    Article  CAS  Google Scholar 

  19. E. Rimstad: Examples of emerging virus diseases in salmonid aquaculture, Aquacult. Res. 42, 86–89 (2011)

    Article  Google Scholar 

  20. B. Robertsen: Can we get the upper hand on viral diseases in aquaculture of Atlantic salmon?, Aquacult. Res. 42, 125–131 (2011)

    Article  Google Scholar 

  21. R.C. Sihag, P. Sharma: Probiotics: The new ecofriendly alternative measures of disease control for sustainable aquaculture, J. Fish. Aquat. Sci. 7(2), 72–103 (2012)

    Article  Google Scholar 

  22. J.W. Pridgeon, P.H. Klesius: Major bacterial diseases in aquaculture and their vaccine development, CAB Reviews 7, 1–16 (2012)

    Article  Google Scholar 

  23. M.G. Bondad-Reantaso, R.P. Subasinghe, J.R. Arthur, K. Ogawa, S. Chinabut, R. Adlard, Z. Tan, M. Shariff: Disease and health management in Asian aquaculture, Vet. Parasitol. 132(3/4), 249–272 (2005)

    Article  Google Scholar 

  24. L.A. Munro, I.S. Wallace: Analysis of farmed fish movements between catchments identifies a simple compartmentalised management strategy for bacterial kidney disease in Scottish aquaculture, Aquaculture 338–341, 300–303 (2012)

    Article  Google Scholar 

  25. M. Briggs: Penaeus vannamei. Cultured Aquatic Species Information Programme. (FAO Fisheries and Aquaculture Department,Rome 2006) http://www.fao.org/fishery/culturedspecies/Litopenaeus_vannamei/en

  26. G.D. Stentiford, D.M. Neil, E.J. Peeler, J.D. Shields, H.J. Small, T.W. Flegel, J.M. Vlak, B. Jones, F. Morado, S. Moss, J. Lotz, L. Bartholomay, D.C. Behringer, C. Hauton, D.V. Lightner: Disease will limit future food supply from the global crustacean fishery and aquaculture sectors, J. Invertebr. Pathol. 110(2), 141–157 (2012)

    Article  CAS  Google Scholar 

  27. T. Defoirdt, P. Sorgeloos, P. Bossier: Alternatives to antibiotics for the control of bacterial disease in aquaculture, Curr. Opin. Microbiol. 14(3), 251–258 (2011)

    Article  Google Scholar 

  28. A.G. Murray, E.J. Peeler: A framework for understanding the potential for emerging diseases in aquaculture, Prev. Vet. Med. 67(2/3), 223–235 (2005)

    Article  Google Scholar 

  29. A.R. Movahedi, D.J. Hampson: New ways to identify novel bacterial antigens for vaccine development, Vet. Microbiol. 131(1/2), 1–13 (2008)

    Article  CAS  Google Scholar 

  30. P.J. Midtlyng, C. Hendriksen, E. Balks, L. Bruckner, L. Elsken, O. Evensen, K. Fyrand, A. Guy, M. Halder, P. Hawkins, G. Kisen, A.B. Romstad, K. Salonius, P. Smith, L.U. Sneddon: Three Rs approaches in the production and quality control of fish vaccines, Biologicals 39(2), 117–128 (2011)

    Article  CAS  Google Scholar 

  31. Y.-B. Wang, J.-R. Li, J. Lin: Probiotics in aquaculture: Challenges and outlook, Aquaculture 281(1–4), 1–4 (2008)

    Google Scholar 

  32. F. Conte: Stress and the welfare of cultured fish, Appl. Anim. Behav. Sci. 86, 205–223 (2004)

    Article  Google Scholar 

  33. C. Hooper, R. Day, R. Slocombe, J. Handlinger, K. Benkendorff: Stress and immune responses in abalone: Limitations in current knowledge and investigative methods based on other models, Fish Shellfish Immunol. 22(4), 363–379 (2007)

    Article  CAS  Google Scholar 

  34. V. Visudtiphole, A. Watthanasurorot, S. Klinbunga, P. Menasveta, K. Kirtikara: Molecular characterization of Calreticulin: A biomarker for temperature stress responses of the giant tiger shrimp Penaeus monodon, Aquaculture 308, S100–S108 (2010)

    Article  CAS  Google Scholar 

  35. H. Jiang, F. Li, Y. Xie, B. Huang, J. Zhang, J. Zhang, C. Zhang, S. Li, J. Xiang: Comparative proteomic profiles of the hepatopancreas in Fenneropenaeus chinensis response to hypoxic stress, Proteomics 9(12), 3353–3367 (2009)

    Article  CAS  Google Scholar 

  36. J. Douxfils, M. Deprez, S.N.M. Mandiki, S. Milla, E. Henrotte, C. Mathieu, F. Silvestre, M. Vandecan, C. Rougeot, C. Mélard, M. Dieu, M. Raes, P. Kestemont: Physiological and proteomic responses to single and repeated hypoxia in juvenile Eurasian perch under domestication – Clues to physiological acclimation and humoral immune modulations, Fish Shellfish Immunol. 33(5), 1112–1122 (2012)

    Article  CAS  Google Scholar 

  37. R.N. Alves, O. Cordeiro, T.S. Silva, N. Richard, M. De Vareilles, G. Marino, P. Di Marco, P.M. Rodrigues, L.E.C. Conceição: Metabolic molecular indicators of chronic stress in gilthead seabream (Sparus aurata) using comparative proteomics, Aquaculture 299(1–4), 57–66 (2010)

    Article  CAS  Google Scholar 

  38. M.F. Addis, R. Cappuccinelli, V. Tedde, D. Pagnozzi, I. Viale, M. Meloni, F. Salati, T. Roggio, S. Uzzau: Influence of Moraxella sp. colonization on the kidney proteome of farmed gilthead sea breams (Sparus aurata, L.), Proteome Sci. 8(1), 50 (2010)

    Google Scholar 

  39. M. Simonian, S.V. Nair, J.A. Nell, D.A. Raftos: Proteomic clues to the identification of QX disease-resistance biomarkers in selectively bred Sydney rock oysters, Saccostrea glomerata, J. Proteomics 73(2), 209–217 (2009)

    Article  CAS  Google Scholar 

  40. H. Sveinsdóttir, A. Steinarsson, A. Gudmundsdóttir: Differential protein expression in early Atlantic cod larvae (Gadus morhua) in response to treatment with probiotic bacteria, Comp. Biochem. Physiol. Part D 4(4), 249–254 (2009)

    Google Scholar 

  41. S.P. Armada: Effect of temperature, salinity and nutrient content on the survival responses of Vibrio splendidus biotype I, Microbiology 149(2), 369–375 (2003)

    Article  CAS  Google Scholar 

  42. J. Binesse, C. Delsert, D. Saulnier, M.-C. Champomier-Vergès, M. Zagorec, H. Munier-Lehmann, D. Mazel, F. Le Roux: Metalloprotease Vsm is the major determinant of toxicity for extracellular products of Vibrio splendidus, Appl. Environ. Microbiol. 74(23), 7108–7117 (2008)

    Article  CAS  Google Scholar 

  43. P. Zhao, J. Huang, X.-H. Wang: Comparative proteomics of two Vibrio anguillarum serotype O1 strains with different virulence phenotypes, Curr. Microbiol. 65(3), 262–271 (2012)

    Article  CAS  Google Scholar 

  44. S.-Y. Wang: Role for the major outer-membrane protein from Vibrio anguillarum in bile resistance and biofilm formation, Microbiology 149(4), 1061–1071 (2003)

    Article  CAS  Google Scholar 

  45. K. Vaitkevicius, P.K. Rompikuntal, B. Lindmark, R. Vaitkevicius, T. Song, S.N. Wai: The metalloprotease PrtV from Vibrio cholerae, FEBS Journal 275(12), 3167–3177 (2008)

    Article  CAS  Google Scholar 

  46. Y. Li, G. Siddiqui, G.H. Wikfors: Non-lethal determination of sex and reproductive condition of eastern oysters Crassostrea virginica gmelin using protein profiles of hemolymph by proteinchip and SELDI-TOF-MS technology, Aquaculture 309(1–4), 258–264 (2010)

    Article  CAS  Google Scholar 

  47. A. Gomiero, D.M. Pampanin, A. Bjørnstad, B.K. Larsen, F. Provan, E. Lyng, O.K. Andersen: An ecotoxicoproteomic approach (SELDI-TOF mass spectrometry) to biomarker discovery in crab exposed to pollutants under laboratory conditions, Aquat. Toxicol. 78(Suppl. 1), S34–41 (2006)

    Article  CAS  Google Scholar 

  48. C. Corporeau, G. Vanderplancke, M. Boulais, M. Suquet, C. Quéré, P. Boudry, A. Huvet, S. Madec: Proteomic identification of quality factors for oocytes in the Pacific oyster Crassostrea gigas, J. Proteomics 75(18), 5554–5563 (2012)

    Article  CAS  Google Scholar 

  49. E. Rufino-Palomares, F.J. Reyes-Zurita, C.A. Fuentes-Almagro, M. De La Higuera, J.A. Lupiáñez, J. Peragón: Proteomics in the liver of gilthead sea bream (Sparus aurata) to elucidate the cellular response induced by the intake of maslinic acid, Proteomics 11(16), 3312–3325 (2011)

    Article  CAS  Google Scholar 

  50. M. Fernández-Navarro, J. Peragón, F.J. Esteban, M. De La Higuera, J.A. Lupiáñez: Maslinic acid as a feed additive to stimulate growth and hepatic protein-turnover rates in rainbow trout (Onchorhynchus mykiss), Comp. Biochem. Physiol. Toxicol. Pharmacol. 144(2), 130–140 (2006)

    Article  CAS  Google Scholar 

  51. A. Ibarz, R. Costa, A.P. Harrison, D.M. Power: Dietary keto-acid feed-back on pituitary activity in gilthead sea bream: Effects of oral doses of AKG, A proteomic Approach. Gen. Comp. Endocrinol. 169(3), 284–292 (2010)

    Article  CAS  Google Scholar 

  52. M.F. Addis, R. Cappuccinelli, V. Tedde, D. Pagnozzi, M.C. Porcu, E. Bonaglini, T. Roggio, S. Uzzau: Proteomic analysis of muscle tissue from gilthead sea bream (Sparus aurata, L.) farmed in offshore floating cages, Aquaculture 309(1–4), 245–252 (2010)

    Article  CAS  Google Scholar 

  53. M.A. Sewell, S. Eriksen, M.J. Middleditch: Identification of protein components from the mature ovary of the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea), Proteomics 8(12), 2531–2542 (2008)

    Article  CAS  Google Scholar 

  54. K.K.W. Wong, A.C. Lane, P.T.Y. Leung, V. Thiyagarajan: Response of larval barnacle proteome to CO${}_{2}$-driven seawater acidification, Comp. Biochem. Physiol. Part D 6(3), 310–321 (2011)

    CAS  Google Scholar 

  55. F. Silvestre, V. Gillardin, J. Dorts: Proteomics to assess the role of phenotypic plasticity in aquatic organisms exposed to pollution and global warming, Integr. Comp. Biol. 52(5), 681–694 (2012)

    Article  CAS  Google Scholar 

  56. M. Byrne, N. Soars, P. Selvakumaraswamy, S.A. Dworjanyn, A.R. Davis: Sea urchin fertilization in a warm, acidified and high pCO${}_{2}$ ocean across a range of sperm densities, Mar. Environ. Res. 69(4), 234–239 (2010)

    Article  CAS  Google Scholar 

  57. V. Thiyagarajan: A review on the role of chemical cues in habitat selection by barnacles: New insights from larval proteomics, J. Exp. Mar. Biol. Ecol. 392(1/2), 22–36 (2010)

    Article  Google Scholar 

  58. L. Tomanek, M.J. Zuzow, A.V. Ivanina, E. Beniash, I.M. Sokolova: Proteomic response to elevated PCO${}_{{2}}$ level in eastern oysters, Crassostrea virginica: Evidence for oxidative stress, J. Exp. Biol. 214(11), 1836–1844 (2011)

    Article  CAS  Google Scholar 

  59. L. Tomanek, M.J. Zuzow: The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: Implications for thermal tolerance limits and metabolic costs of thermal stress, J. Exp. Biol. 213(20), 3559–3574 (2010)

    Article  CAS  Google Scholar 

  60. P.A. Fields, M.J. Zuzow, L. Tomanek: Proteomic responses of blue mussel (Mytilus) congeners to temperature acclimation, J. Exp. Biol. 215(7), 1106–1116 (2012)

    Article  CAS  Google Scholar 

  61. V. Matranga, A. Pinsino, D. Randazzo, A. Giallongo, P. Dubois: Long-term environmental exposure to metals (Cu, Cd, Pb, Zn) activates the immune cell stress response in the common European sea star (Asterias rubens), Mar. Environ. Res. 76, 122–127 (2012)

    Article  CAS  Google Scholar 

  62. N. Veldhoen, M.G. Ikonomou, C.C. Helbing: Molecular profiling of marine fauna: Integration of omics with environmental assessment of the world's oceans, Ecotoxicol. Environ. Saf. 76(2), 23–38 (2012)

    Article  CAS  Google Scholar 

  63. F. Liu, D.-Z. Wang, W.-X. Wang: Cadmium-induced changes in trace element bioaccumulation and proteomics perspective in four marine bivalves, Environ. Toxicol. Chem./SETAC 31(6), 1292–1300 (2012)

    Article  CAS  Google Scholar 

  64. A. Campos, S. Tedesco, V. Vasconcelos, S. Cristobal: Proteomic research in bivalves: Towards the identification of molecular markers of aquatic pollution, J. Proteomics 75(14), 4346–4359 (2012)

    Article  CAS  Google Scholar 

  65. H. Amelina, I. Apraiz, W. Sun, S. Cristobal: Proteomics-based method for the assessment of marine pollution using liquid chromatography coupled with two-dimensional electrophoresis, J. Proteome Res. 6(6), 2094–2104 (2007)

    Article  CAS  Google Scholar 

  66. P.T.Y. Leung, Y. Wang, S.S.T. Mak, W.C. Ng, K.M.Y. Leung: Differential proteomic responses in hepatopancreas and adductor muscles of the green-lipped mussel Perna viridis to stresses induced by cadmium and hydrogen peroxide, Aquatic Toxicol. 105(1/2), 49–61 (2011)

    Article  CAS  Google Scholar 

  67. A. Romero-Ruiz, M. Carrascal, J. Alhama, J.L. Gómez-Ariza, J. Abian, J. López-Barea: Utility of proteomics to assess pollutant response of clams from the Doñana bank of Guadalquivir Estuary (SW Spain), Proteomics 6(Suppl. 1), S245–255 (2006)

    Article  Google Scholar 

  68. K. Berg, P. Puntervoll, S. Valdersnes, A. Goksøyr: Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury, Aquat. Toxicol. 100(1), 51–65 (2010)

    Article  CAS  Google Scholar 

  69. D.C. Evers, M.A. Turnquist, D.G. Buck: Patterns of global seafood mercury concentrations and their relationship with human health, version 3. BRI (Science, Communications Series, (Biodiversity Research Institute, Gorham 2012) pp. 1–12

    Google Scholar 

  70. J. Zhou, Z.-H. Cai, L. Li, Y.-F. Gao, T.H. Hutchinson: A proteomics based approach to assessing the toxicity of bisphenol A and diallyl phthalate to the abalone (Haliotis diversicolor supertexta), Chemosphere 79(5), 595–604 (2010)

    Article  CAS  Google Scholar 

  71. International Programme on Chemical Safety (2002) Global assessment of the state-of-the-science of endocrine disruptors. In: WHO/PCS/EDC/02.2. http://www.who.int/ipcs/publications/new_issues/endocrine_disruptors/en/

  72. C. Gestal, P. Roch, T. Renault, A. Pallavicini, C. Paillard, B. Novoa, R. Oubella, P. Venier, A. Figueras: Study of diseases and the immune system of bivalves using molecular biology and genomics, Rev. Fish. Sci. 16, 133–156 (2008)

    Article  CAS  Google Scholar 

  73. A.L. Filby, C.R. Tyler: Appropriate housekeeping genes for use in expression profiling the effects of environmental estrogens in fish, BMC Mol. Biol. 8, 10 (2007)

    Article  CAS  Google Scholar 

  74. Å. Granmo, R. Ekelund, K. Magnusson, M. Berggren: Lethal and sublethal toxicity of 4-nonylphenol to the common mussel (Mytilus edulis L.), Environ. Pollut. 59(2), 115–127 (1989)

    Article  CAS  Google Scholar 

  75. D. Pascoe, K. Carroll, W. Karntanut, M.M. Watts: Toxicity of 17α-ethinylestradiol and bisphenol A to the freshwater cnidarian Hydra vulgaris, Arch. Environ. Contam. Toxicol. 43(1), 56–63 (2002)

    Article  CAS  Google Scholar 

  76. Y. Liu, N.F.Y. Tam, Y. Guan, M. Yasojima, J. Zhou, B. Gao: Acute toxicity of nonylphenols and bisphenol A to the embryonic development of the abalone Haliotis diversicolor supertexta, Ecotoxicology (London) 20(6), 1233–1245 (2011)

    Article  CAS  Google Scholar 

  77. Y. Liu, Y. Guan, Q. Gao, N.F.Y. Tam, W. Zhu: Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta, Chemosphere 80(5), 592–599 (2010)

    Article  CAS  Google Scholar 

  78. United Nations Development Programme: Catalysing Ocean Finance. Volume I. Transforming Markets to Restore and Protect the Global Ocean (University of California Washington Center, Washington 2012) pp. 1–54

    Google Scholar 

  79. E.G. Gonzalez, G. Krey, M. Espiñeira, A. Diez, A. Puyet, J.M. Bautista: Population proteomics of the European Hake (Merluccius merluccius), J. Proteome Res. 9(12), 6392–6404 (2010)

    Article  CAS  Google Scholar 

  80. D. Raghunath: Emerging antibiotic resistance in bacteria with special reference to India, J. Biosci. 33(4), 593–603 (2008)

    Article  CAS  Google Scholar 

  81. S. Schjørring, K.A. Krogfelt: Assessment of bacterial antibiotic resistance transfer in the gut, Int. J. Microbiol. 2011, 312956 (2011)

    Article  Google Scholar 

  82. S.V. Sperstad, T. Haug, H.-M. Blencke, O.B. Styrvold, C. Li, K. Stensvåg: Antimicrobial peptides from marine invertebrates: Challenges and perspectives in marine antimicrobial peptide discovery, Biotechnol. Adv. 29(5), 519–530 (2011)

    Article  CAS  Google Scholar 

  83. S.B. Zotchev, O.N. Sekurova, L. Katz: Genome-based bioprospecting of microbes for new therapeutics, Curr. Opin. Biotechnol. 23(6), 941–947 (2012)

    Article  CAS  Google Scholar 

  84. N.L. Thakur, R. Jain, F. Natalio, B. Hamer, A.N. Thakur, W.E.G. Müller: Marine molecular biology: An emerging field of biological sciences, Biotechnol. Adv. 26(3), 233–245 (2008)

    Article  CAS  Google Scholar 

  85. R.C. Pereira, L.V. Costa-Lotufo: Bioprospecting for bioactives from seaweeds: Potential, obstacles and alternatives, Rev. Bras. Farmacogn. 22(4), 894–905 (2012)

    Article  CAS  Google Scholar 

  86. J. Rocha, L. Peixe, N.C.M. Gomes, R. Calado: Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting, Mar. Drugs 9(10), 1860–1886 (2011)

    Article  CAS  Google Scholar 

  87. E.L. Cooper, D. Yao: Diving for drugs: Tunicate anticancer compounds, Drug Discov. Today 17(11/12), 636–648 (2012)

    Article  CAS  Google Scholar 

  88. R.H. Wijffels: Potential of sponges and microalgae for marine biotechnology, Trends in Biotechnol. 26(1), 26–31 (2008)

    Article  CAS  Google Scholar 

  89. D.M. Ekkers, M.S. Cretoiu, A.M. Kielak, J.D. Van Elsas: The great screen anomaly—a new frontier in product discovery through functional metagenomics, Appl. Microbiol. Biotechnol. 93, 1005–1020 (2011)

    Article  CAS  Google Scholar 

  90. S. Dupont, K. Wilson, M. Obst, H. Sköld, H. Nakano, M.C. Thorndyke: Marine ecological genomics: When genomics meets marine ecology, Mar. Ecol. Prog. Ser. 332, 257–273 (2007)

    Article  CAS  Google Scholar 

  91. F.F. Evans, M.J. Raftery, S. Egan, S. Kjelleberg: Profiling the secretome of the marine bacterium Pseudoalteromonas tunicata using amine-specific isobaric tagging (iTRAQ), J. Proteome Res. 6(3), 967–975 (2007)

    Article  CAS  Google Scholar 

  92. L. Margarucci, M.C. Monti, A. Tosco, R. Riccio, A. Casapullo: Chemical proteomics discloses petrosapongiolide M, an antiinflammatory marine sesterterpene, as a proteasome inhibitor, Angew. Chem. Int. Ed. Engl. 49(23), 3960–3963 (2010)

    Article  CAS  Google Scholar 

  93. Y.S. Cho, H.J. Kwon: Identification and validation of bioactive small molecule target through phenotypic screening, Bioorg. Med. Chem. 20(6), 1922–1928 (2012)

    Article  CAS  Google Scholar 

  94. P.T. Northcote, J.W. Blunt, M.H.G. Munro: Pateamine: A potent cytotoxin from the New Zealand marine sponge, Mycale sp, Tetrahedron Lett. 32(44), 6411–6414 (1991)

    Article  CAS  Google Scholar 

  95. W.-K. Low, Y. Dang, T. Schneider-Poetsch, Z. Shi, N.S. Choi, W.C. Merrick, D. Romo, J.O. Liu: Inhibition of eukaryotic translation initiation by the marine natural product pateamine A, Mol. Cell 20(5), 709–722 (2005)

    Article  CAS  Google Scholar 

  96. M.-E. Bordeleau, J. Matthews, J.M. Wojnar, L. Lindqvist, O. Novac, E. Jankowsky, N. Sonenberg, P. Northcote, P. Teesdale-Spittle, J. Pelletier: Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation, Proc. Natl. Acad. Sci. (USA) 102, 10460–10465 (2005)

    Article  CAS  Google Scholar 

  97. L.L. Tayo, B. Lu, L.J. Cruz, J.R. Yates: Proteomic analysis provides insights on venom processing in Conus textile, J. Proteome Res. 9(5), 2292–2301 (2010)

    Article  CAS  Google Scholar 

  98. H. Safavi-Hemami, N.D. Young, N.A. Williamson, A.W. Purcell: Proteomic interrogation of venom delivery in marine cone snails: Novel insights into the role of the venom bulb, J. Proteome Res. 9(11), 5610–5619 (2010)

    Article  CAS  Google Scholar 

  99. H. Safavi-Hemami, W.A. Siero, D.G. Gorasia, N.D. Young, D. Macmillan, N.A. Williamson, A.W. Purcell: Specialisation of the venom gland proteome in predatory cone snails reveals functional diversification of the conotoxin biosynthetic pathway, J. Proteome Res. 10(9), 3904–3919 (2011)

    Article  CAS  Google Scholar 

  100. A. Violette, D. Biass, S. Dutertre, D. Koua, D. Piquemal, F. Pierrat, R. Stöcklin, P. Favreau: Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach, J. Proteomics 75(17), 5215–5225 (2012)

    Article  CAS  Google Scholar 

  101. G.P. Miljanich: Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain, Curr. Med. Chem. 11(23), 3029–3040 (2004)

    Article  CAS  Google Scholar 

  102. J.G. McGivern: Ziconotide: A review of its pharmacology and use in the treatment of pain, Neuropsychiatr. Dis. Treat. 3(1), 69–85 (2007)

    Article  CAS  Google Scholar 

  103. F.M. Van Dolah: Marine algal toxins: Origins, health effects, and their increased occurrence, Environ. Health Perspectives 108(Suppl. 1), 133–141 (2000)

    Article  Google Scholar 

  104. G.C. Pitcher, F.G. Figueiras, B.M. Hickey, M.T. Moita: The physical oceanography of upwelling systems and the development of harmful algal blooms, Prog. Oceanogr. 85(1), 5–32 (2010)

    Article  Google Scholar 

  105. F.G. Camacho, J.G. Rodríguez, A.S. Mirón, M.C.C. García, E.H. Belarbi, Y. Chisti, E.M. Grima: Biotechnological significance of toxic marine dinoflagellates, Biotechnol. Adv. 25(2), 176–194 (2007)

    Article  CAS  Google Scholar 

  106. L.L. Chan, I.J. Hodgkiss, P.K.-S. Lam, J.M.-F. Wan, H.-N. Chou, J.H.-K. Lum, M.G.-Y. Lo, A.S.-C. Mak, W.-H. Sit, S.C.-L. Lo: Use of two-dimensional gel electrophoresis to differentiate morphospecies of Alexandrium minutum, a paralytic shellfish poisoning toxin-producing dinoflagellate of harmful algal blooms, Proteomics 5(6), 1580–1593 (2005)

    Article  CAS  Google Scholar 

  107. L.L. Chan, I.J. Hodgkiss, S. Lu, S.C.-L. Lo: Use of two-dimensional gel electrophoresis proteome reference maps of dinoflagellates for species recognition of causative agents of harmful algal blooms, Proteomics 4(1), 180–192 (2004)

    Article  CAS  Google Scholar 

  108. L.L. Chan, W.-H. Sit, P.K.-S. Lam, D.P.H. Hsieh, I.J. Hodgkiss, J.M.-F. Wan, A.Y.-T. Ho, N.M.-C. Choi, D.-Z. Wang, D. Dudgeon: Identification and characterization of a biomarker of toxicity from the proteome of the paralytic shellfish toxin-producing dinoflagellate Alexandrium tamarense (Dinophyceae), Proteomics 6(2), 654–666 (2006)

    Article  CAS  Google Scholar 

  109. G. Ronzitti, A. Milandri, G. Scortichini, R. Poletti, G.P. Rossini: Protein markers of algal toxin contamination in shellfish, Toxicon 52(6), 705–713 (2008)

    Article  CAS  Google Scholar 

  110. J. Wang, Y.-Y. Wang, L. Lin, Y. Gao, H.-S. Hong, D.-Z. Wang: Quantitative proteomic analysis of okadaic acid treated mouse small intestines reveals differentially expressed proteins involved in diarrhetic shellfish poisoning, J. Proteomics 75(7), 2038–2052 (2012)

    Article  CAS  Google Scholar 

  111. L. Ao, J. Liu, L. Gao, S. Liu, M. Yang, M. Huang, J. Cao: Differential expression of genes associated with cell proliferation and apoptosis induced by okadaic acid during the transformation process of BALB/c 3T3 cells, Toxicol. in Vitro 22(1), 116–127 (2008)

    Article  CAS  Google Scholar 

  112. L.E. Hood, G.S. Omenn, R.L. Moritz, R. Aebersold, K.R. Yamamoto, M. Amos, J. Hunter-Cevera, L. Locascio: New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences, Proteomics 12(18), 2773–2783 (2012)

    Article  CAS  Google Scholar 

  113. N. Nagaraj, N.A. Kulak, J. Cox, N. Neuhauser, K. Mayr, O. Hoerning, O. Vorm, M. Mann: System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap, Mol. Cell. Proteomics 11(3), M111–013722 (2012)

    Article  CAS  Google Scholar 

  114. A.I. Lamond, M. Uhlen, S. Horning, A. Makarov, C.V. Robinson, L. Serrano, F.U. Hartl, W. Baumeister, A.K. Werenskiold, J.S. Andersen, O. Vorm, M. Linial, R. Aebersold, M. Mann: Advancing cell biology through proteomics in space and time (PROSPECTS), Mol. Cell. Proteomics 11(3), O112–017731 (2012)

    Article  CAS  Google Scholar 

  115. A.F.M. Altelaar, J. Munoz, A.J.R. Heck: Next-generation proteomics: Towards an integrative view of proteome dynamics, Nat. Rev. Genet. 14(1), 35–48 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernon E. Coyne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coyne, V.E. (2015). Proteomics: Applications and Advances. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_18

Download citation

Publish with us

Policies and ethics