Baer, M., Nunziato, J.: A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. International Journal of Multiphase Flow 12, 861–889 (1986)
CrossRef
MATH
Google Scholar
Saurel, R., Abgrall, R.: A multiphase godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150, 425–467 (1999)
CrossRef
MATH
MathSciNet
Google Scholar
Saurel, R., Lemetayer, O.: A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239–271 (2001)
CrossRef
MATH
Google Scholar
Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys 181, 577–616 (2002)
CrossRef
MATH
MathSciNet
Google Scholar
Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)
CrossRef
MATH
MathSciNet
Google Scholar
Tokareva, S.A., Toro, E.F.: Hllc-type riemann solver for the baer-nunziato equations of compressible two-phase flow. J. Comput. Phys. 229, 3573–3604 (2010)
CrossRef
MATH
MathSciNet
Google Scholar
Li, Q., Feng, H.J., Cai, T., Hu, C.B.: Difference scheme for two-phase flow. Applied Mathematics and Mechanics 25, 536–545 (2004)
CrossRef
MATH
MathSciNet
Google Scholar
Tian, B., Toro, E.F., Castro, C.E.: A path-conservative method for a five-equation model of two-phase flow with an hllc-type riemann solver. Computers and Fluids 46, 122–132 (2011)
CrossRef
MATH
MathSciNet
Google Scholar
Ambroso, A., Chalons, C., Raviart, P.-A.: A godunov-type method for the seven-equation model of compressible two-phase flow. Computers and Fluids 54, 67–91 (2012)
CrossRef
MathSciNet
Google Scholar
Abgrall, R., Saurel, R.: Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186, 361–396 (2003)
CrossRef
MATH
MathSciNet
Google Scholar
Wang, C.W., Liu, T.G., Khoo, B.C.: A real ghost fluid method for the simulation of multimedium compressible flow. SIAM J. Sci. Comput. 28, 278–302 (2006)
CrossRef
MATH
MathSciNet
Google Scholar
Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003)
CrossRef
MATH
Google Scholar
Tang, H.S., Huang, D.: A second-order accurate capturing scheme for 1d invisid flows of gas and water with vacuum zones. J. Comput. Phys. 128, 301–318 (1996)
CrossRef
MATH
MathSciNet
Google Scholar
Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)
CrossRef
MATH
MathSciNet
Google Scholar
Quirk, J.J., Karni, S.: On the dynamics of a shock-bubble interaction, Tech. Rep. 94-75, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA (September 1994)
Google Scholar
Haas, J.-F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics 181, 42–76 (1987)
CrossRef
Google Scholar