Natural Frequency Ratio Effect on 2 DOF Flow Induced Vibration of Cylindrical Structures

  • Xiangxi Han
  • Chengbi Zhao
  • Youhong Tang
  • Xiaoming Chen
  • Wei Lin
  • Karl Sammut
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 405)


In this study, the vortex-induced vibration (VIV) of a circular cylinder at the low Reynolds number of 200 is simulated by a transient coupled fluid-structure interaction numerical model using the combination of FLUENT and ANSYS platforms. Considering VIV with low reduced damping parameters, the trend of the lift coefficient, the drag coefficient and the displacement of the cylinder are analyzed under different oscillating frequencies of the cylinder. The frequency ratio α is a very important parameter, which has been intensively investigated here. The typical nonlinear phenomena of locked-in, beat and phases switch can be captured successfully. The evolution of vortex shedding from the cylinder and the trajectory of the 2 DOF case with varied frequency ratio is also discussed.


Fluid-structure interaction Vortex-induced vibration Workbench system coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anagnostopoulos, P., Bearman, P.W.: Response Characteristics of a Vortex-Excited Cylinder at Low Reynolds Number. J. Fluids Struct. 6, 39–50 (1992)CrossRefGoogle Scholar
  2. 2.
    Feng, C.: The Measurement of Vortex-Induced Effects in Flow Past Stationary and Oscillation Circular and D-Section Cylinders. M.A.Sc. Thesis. British Columbia, Vancouver, B.C., Canada (1968)Google Scholar
  3. 3.
    Brika, D., Laneville, A.: Vortex-Induced Vibrations of a Long Flexible Circular Cylinder. J. Fluid Mech. 250, 481–508 (1993)CrossRefGoogle Scholar
  4. 4.
    Anagnostopoulos, P.: Numerical Investigation of Response and Wake Characteristics of a Vortex Excited Cylinder in a Uniform Stream. J. Fluids Struct. 8, 367–390 (1994)CrossRefGoogle Scholar
  5. 5.
    Brika, D., Laneville, A.: Wake Interference between Two Circular Cylinders. J. Wind Eng. Ind. Aerod. 72, 61–70 (1997)CrossRefGoogle Scholar
  6. 6.
    Khalak, A., Williamson, C.H.K.: Dynamics of a Hydroelastic Cylinder with Very Low Mass and Damping. J. Fluids Struct. 10, 455–472 (1996)CrossRefGoogle Scholar
  7. 7.
    Sarpkaya, T.: A Critical Review of the Intrinsic Nature of Vortex-induced Vibrations. J. Fluids Struct. 19, 389–447 (2004)CrossRefGoogle Scholar
  8. 8.
    Williamson, C.H.K., Govardhan, R.: Vortex-induced Vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Jeon, D., Gharib, M.: On Circular Cylinders Undergoing Two-degree-of-freedom Forced Motions. J. Fluids Struct. 15, 533–541 (2001)CrossRefGoogle Scholar
  10. 10.
    Jauvtis, N., Williamson, C.H.K.: The Effect of Two Degrees of Freedom on Vortex-induced Vibration at Low Mass and Damping. J. Fluid Mech. 509, 23–62 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dahl, J.M., Hover, F.S., Triantafyllou, M.S.: Two-degree-of-freedom Vortex-induced Vibrations Using a Force Assisted Apparatus. J. Fluids Struct. 22, 807–818 (2006)CrossRefGoogle Scholar
  12. 12.
    Halse, K.: On Vortex Shedding & Predictions of VIV of Circular Cylinders. Ph.D. Thesis. NTNU Trondheim (1997)Google Scholar
  13. 13.
    Liu, C., Zheng, X., Sung, C.H.: Preconditioned Multigrid Methods for Unsteady Incompressible Flows. J. Comput. Phys. 139, 35–57 (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Li, T., Zhang, J., Zhang, W.: Nonlinear Characteristics of Vortex-induced Vibration at Low Reynolds Number. Commun. Nonlinear Sci. Numer. Simul. 16, 2753–2771 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Blackburn, H., Karniadakis, G.: Two- and Three-dimensional Simulations of Vortex-induced Vibration of a Circular Cylinder. In: Proceedings of the Third International Offshore and Polar Engineering Conference, Singapore, pp. 715–720 (1993)Google Scholar
  16. 16.
    Yang, J., Preidikman, S., Balaras, E.: A Strongly Coupled, Embedded Boundary Method for Fluid–structure Interactions of Elastically Mounted Rigid-bodies. J. Fluids Struct. 24, 167–182 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Etienne, S., Pelletier, D.: The Low Reynolds Number Limit of Vortex-induced Vibrations. J. Fluids Struct. 31, 18–29 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiangxi Han
    • 1
  • Chengbi Zhao
    • 1
  • Youhong Tang
    • 2
  • Xiaoming Chen
    • 3
  • Wei Lin
    • 1
  • Karl Sammut
    • 2
  1. 1.Department of Naval Architecture and Ocean Engineering, School of Civil Engineering and TransportationSouth China University of TechnologyChina
  2. 2.Centre for Maritime Engineering, Control and Imaging, School of Computer Science, Engineering and MathematicsFlinders UniversityAustralia
  3. 3.China Ship Architecture Design & Research Institute Co., Ltd.BeijingChina

Personalised recommendations