Skip to main content

Parallel Implementation of Localized Radial Basis Function Interpolation for Computational Aeroelastic Predictions

  • Conference paper

Part of the Communications in Computer and Information Science book series (CCIS,volume 405)

Abstract

Mesh deformation and data interpolation using radial basis functions (RBF) in combination with data reduction greedy algorithm has proven to be an efficient method, both in providing high quality deformed meshes and speed up computations. In the present work an in-house hybrid unstructured Reynolds-averaged Navier-Stokes solver (HUNS3D) has been extended to include dynamic mesh motion and aeroelastic behavior prediction. For present computational aeroelastic simulations, RBF interpolation serves as single subroutine and carries out the required data interpolation for both the surface loads and deformations. For mesh motion and displacement interpolation the already developed RBF interpolation methods works reasonably well. But for interpolation of aerodynamic loads the current procedures become expensive in terms of computational time and are greatly influenced by the parameters used in the interpolation. In this paper a more efficient and robust method is presented that localizes the interpolation. This method resembles in concept to the pointwise form of partition of unity method but somewhat differs in its implementation. It is efficient in terms of computational time and can be readily parallelized. Also it reduces the influence of the interpolation parameters on the coupling behavior. The proposed method has been tested by performing static aeroelastic computations in transonic flow over the AGARD 445.6 wing, HIRENASD wing/body configuration and a flexible wing with spar-rib-skin construction. The method has shown its effectiveness in aeroelastic behavior prediction for different aerodynamic configurations.

Keywords

  • radial basis function interpolation
  • greedy algorithm
  • parallelization
  • mesh motion
  • computational aeroelasticity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-53962-6_2
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-53962-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. David, M.S., Liu, D.D., Lawrence, J.H.: Computational Aeroelasticity: Success, Progress, Challenge. Journal of Aircraft 40(5) (September-October 2003)

    Google Scholar 

  2. Wendland, H.: Hybrid Methods for Fluid-Structure-Interaction Problems in Aeroelasticity. In: Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 65, pp. 335–358. Springer, Heidelberg (2008)

    Google Scholar 

  3. Bendiksen, O.O.: Modern developments in aeroelasticity. Proceedings of the Institute of Mechanical Engineers Part G: Journal of Aerospace Engineering 218, 157–177 (2004)

    CrossRef  Google Scholar 

  4. Hubner, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid–structure interaction using space-time finite elements. Computer Methods in Appied Mechanics and Engineering 193, 2087–2104 (2004)

    CrossRef  Google Scholar 

  5. Woodgate, M.A., Badcock, K.J., Rampurawala, A.M., Richards, B.: Aeroelastic calculations for the Hawk aircraft using the Euler equations. Journal of Aircraft 42(4), 1005–1011 (2005)

    CrossRef  Google Scholar 

  6. Geuzaine, P., Brown, G., Harris, C., Farhat, C.: Aeroelastic dynamic analysis of a full F-16 configuration for various flight conditions. AIAA Journal 41(3), 363–371 (2003)

    CrossRef  Google Scholar 

  7. Guruswamy, G.P.: A New Modular Approach for Tightly Coupled Fluid/Structure Analysis. International Journal of Aerospace Innovations 1(1) (2009)

    Google Scholar 

  8. Ramji, K., Wei, S.: Fluid–structure interaction for aeroelastic applications. Progress in Aerospace Sciences 40, 535–558 (2005)

    Google Scholar 

  9. Manoj, K.B.: A CFD/CSD interaction methodology for aircraft wings. Phd thesis, Virginia Polytechnic Institute and State University (1997)

    Google Scholar 

  10. Batina, J.T.: Unsteady Euler Algorithm with Unstructured Dynamic Mesh for Complex-Aircraft Aerodynamics Analysis. AIAA Journal 29(3), 327–333 (1991)

    CrossRef  Google Scholar 

  11. Liu, X., Qin, N., Xia, H.: Fast Dynamic Grid Deformation based on Delaunay Graph Mapping. Journal of Computational Physics 211(2), 405–423 (2006)

    CrossRef  MATH  Google Scholar 

  12. Cizmas, P., Gargoloff, J.: Mesh generation and deformation algorithm for aeroelasticity simulations. In: 45th Aerospace Sciences Meeting, Reno, NV, AIAA-2007-556 (2007)

    Google Scholar 

  13. Maman, N., Farhat, C.: Matching fluid and structure meshes for aeroelastic computations: A parallel approach. Computers and Structures 54(4), 779–785 (1995)

    CrossRef  Google Scholar 

  14. Pidparti, R.M.V.: Structural and aerodynamic data transformation using inverse isoparametric mapping. Journal of Aircraft 29(3), 507–509 (1992)

    CrossRef  Google Scholar 

  15. Chen, P.C., Jadic, I.: Interfacing of fluid and structural models via innovative structural boundary element method. AIAA Journal 1998 36(2), 282–287 (1998)

    MATH  Google Scholar 

  16. Rendall, T.C.S., Allen, C.B.: Unified fluid–structure interpolation and mesh motion using radial basis functions. International Journal for Numerical Methods in Engineering 74(10), 1519–1559 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Gang, W., Ye, Z.: Mixed Element Type Unstructured Grid Generation and its Application to Viscous Flow Simulation. In: 24th International Congress of Aeronautical Sciences, Yokohama, Japan (2004)

    Google Scholar 

  18. Gang, W., Ye Li, H., Yang, Q.: Studies on Aerodynamic Interferences between the Components of Transport Airplane using Unstructured Navier-Stokes Simulations. Computational Fluid Dynamics Journal 15(1), 191–197 (2006)

    Google Scholar 

  19. Dhondt, G.: Calculix (2012), http://calculix.de

  20. Rendall, T.C.S., Allen, C.B.: Improved radial basis function fluid–structure coupling via efficient localized implementation. International Journal for Numerical Methods in Engineering 78, 1188–1208 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Rendall, T.C.S., Allen, C.B.: Fluid-structure interpolation and mesh motion using radial basis functions. International Journal for Numerical Methods in Engineering 75(10), 1519–1559 (2008)

    CrossRef  MathSciNet  Google Scholar 

  22. Wendland, H.: Scattered Data Approximation, 1st edn. Cambridge University Press (2005)

    Google Scholar 

  23. Rendall, T.C.S., Allen, C.B.: Efficient Mesh Motion using Radial Basis Functions with Data Reduction Algorithms. Journal of Computational Physics 229(7), 6231–6249 (2009)

    CrossRef  MathSciNet  Google Scholar 

  24. Cai, J., Liu, F., Tsai, H.M.: Static Aero-elastic Computation with a Coupled CFD and CSD Method. In: 39th AIAA Aerospace Sciences Meeting & Exhibit, AIAA-2001-0717, Reno, NV, January 8-11 (2001)

    Google Scholar 

  25. Erkut, B., Ali, A.: Development of a Coupling Procedure for Static Aeroelastic Analyses. Scientific Technical Review 61(3-4), 39–48 (2011)

    Google Scholar 

  26. Ballmann, J., Dafnis, A., Korsch, H.: Experimental Analysis of High Reynolds Number Aero-Structural Dynamics in ETW. AIAA Paper 2008-841 (2008)

    Google Scholar 

  27. https://c3.nasa.gov/dashlink/static/media/other/HIRENASD_base.htm

  28. Newman, J.C., Taylor, A.C.: Three-dimensional aerodynamic shape sensitivity analysis and design optimization using the Euler equations on unstructured grids. AIAA Paper 96-2464 (1996)

    Google Scholar 

  29. Newman, J.C., Newmanb, P.A., Taylor, A.C., Hou, G.J.-W.: Efficient nonlinear static aeroelastic wing analysis. Computers & Fluids 28, 615–628 (1999)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, G., Mian, H.H., Ye, ZY., Lee, JD. (2014). Parallel Implementation of Localized Radial Basis Function Interpolation for Computational Aeroelastic Predictions . In: Li, K., Xiao, Z., Wang, Y., Du, J., Li, K. (eds) Parallel Computational Fluid Dynamics. ParCFD 2013. Communications in Computer and Information Science, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53962-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53962-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53961-9

  • Online ISBN: 978-3-642-53962-6

  • eBook Packages: Computer ScienceComputer Science (R0)