Skip to main content

A Novel Direct Anonymous Attestation Scheme Using Secure Two-Party Computation

  • Conference paper
Frontiers in Internet Technologies

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 401))

  • 1042 Accesses

Abstract

Direct Anonymous Attestation (DAA) is a cryptographic scheme which enables the remote authentication of a trusted platform whilst preserving privacy under the user’s control. In term of construction of DAA, due to the limited computational and storage capability of trusted platform module (TPM), in this paper, we propose a novel approach for constructing an efficient DAA scheme: we design a secure two-party computation protocol for the Join/Issue protocol of DAA, and construct the DAA scheme concretely under the q-SDH assumption and XDH assumption. Based on the DAA security model, we prove that our DAA scheme meets user-controlled anonymity, user-controlled traceability in the random oracle model. Finally compared with other existing DAA schemes, our DAA scheme has better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. TCG. TPM Main Part 1, Design Principles Specification 1.2 (2003), https://www.trustedcomputinggroup.org/

  2. TCG. Trusted Platform Module specification (TPM), version 1.2 (2003)

    Google Scholar 

  3. TCG. Trusted Platform Module specification (TPM), version 1.1 (2001)

    Google Scholar 

  4. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security (CCS 2004), pp. 132–145. ACM Press, New York (2004)

    Google Scholar 

  5. TCG. TCG MPWG Mobile Trusted Module specification, version 1.0, Revision 1 (2007)

    Google Scholar 

  6. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Durahim, A., Savas, E.: A2-MAKE: An efficient anonymous and accountable mutual authentication and key agreement protocol for WMNs. Ad Hoc Networks 9, 1202–1220 (2011)

    Article  Google Scholar 

  8. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a standard Java Card. In: Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS 2009), pp. 600–610. ACM Press, New York (2009)

    Chapter  Google Scholar 

  9. Bella, G., Giustolisi, R., Riccobene, S.: Enforcing privacy in e-commerce by balancing anonymity and trust. Computers & Security 30(8), 705–718 (2011)

    Article  Google Scholar 

  10. Gummadi, R., Balakrishnan, H., Maniatis, P., Ratnasamy, S.: Not-a-Bot (NAB): Improving Service Availability in the Face of Botnet Attacks. In: Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, pp. 307–320. USENIX Association, Berkeley (2009)

    Google Scholar 

  11. Smyth, B., Ryan, M., Chen, L.: Formal analysis of anonymity in ECC-based Direct Anonymous Attestation schemes. In: Barthe, G., Datta, A., Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 245–262. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Greveler, U., Justus, B., Loehr, D.: Direct Anonymous Attestation: Enhancing Cloud Service User Privacy. In: Meersman, R., et al. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 577–587. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Dietrich, K., Winter, J., Luzhnica, G., Podesser, S.: Implementation Aspects of Anonymous Credential Systems for Mobile Trusted Platforms. In: De Decker, B., Lapon, J., Naessens, V., Uhl, A. (eds.) CMS 2011. LNCS, vol. 7025, pp. 45–58. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Chen, L., Morrissey, P., Smart, N.: DAA: Fixing the pairing based protocols. Cryptology ePrint Archive. Report 2009/198 (2009), http://eprint.iacr.org/2009/198

  17. Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Chen, L.: A DAA scheme using batch proof and verification. In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 166–180. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Chen, X., Feng, D.: Direct Anonymous Attestation Based on Bilinear maps. Chinese Journal of Software, China 21(8), 2070–2078 (2010)

    Article  MathSciNet  Google Scholar 

  20. Brickell, E., Li, J.: A pairing-based DAA scheme furhter reducing TPM resources. In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 181–195. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Brickell, E., Chen, L., Li, J.: Simplified security notions for direct anonymous attestation and a concrete scheme from pairings. Int. Journal of Information Security 8, 315–330 (2009)

    Article  Google Scholar 

  23. Paillier, P.: Public-key cryptosystems based on composite residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Chase, M.: Efficient Non-Interactive Zero-Knowledge Proofs for Privacy Applications. PhD Thesis, Brown University, pp. 57-67 (2008)

    Google Scholar 

  28. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  29. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)

    Article  MATH  Google Scholar 

  30. Barreto, P.S.L.M., Naehrig, M.: Pairing- friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. Brickell, E., Chen, L., Li, J.: A (Corrected) DAA Scheme Using Batch Proof and Verification. In: Chen, L., Yung, M., Zhu, L. (eds.) INTRUST 2011. LNCS, vol. 7222, pp. 304–337. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yue, X., Zhou, F. (2013). A Novel Direct Anonymous Attestation Scheme Using Secure Two-Party Computation. In: Su, J., Zhao, B., Sun, Z., Wang, X., Wang, F., Xu, K. (eds) Frontiers in Internet Technologies. Communications in Computer and Information Science, vol 401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53959-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53959-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53958-9

  • Online ISBN: 978-3-642-53959-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics