Use of XML Schema Definition for the Development of Semantically Interoperable Healthcare Applications

  • Luciana Tricai Cavalini
  • Timothy Wayne Cook
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8315)


Multilevel modeling has been proven in software as a viable solution for semantic interoperability, without imposing any specific programming languages or persistence models. The Multilevel Healthcare Information Modeling (MLHIM) specifications have adopted the XML Schema Definition 1.1 as the basis for its reference implementation, since XML technologies are consistent across all platforms and operating systems, with tools available for all mainstream programming languages. In MLHIM, the healthcare knowledge representation is defined by the Domain Model, expressed as Concept Constraint Definitions (CCDs), which provide the semantic interpretation of the objects persisted according to the generic Reference Model classes. This paper reports the implementation of the MLHIM Reference Model in XML Schema Definition language version 1.1 as well as a set of examples of CCDs generated from the National Cancer Institute – Common Data Elements (NCI CDE) repository. The set of CCDs was the base for the simulation of semantically coherent data instances, according to independent XML validators, persisted on an eXistDB database. This paper shows the feasibility of adopting XML technologies for the achievement of semantic interoperability in real healthcare scenarios, by providing application developers with a significant amount of industry experience and a wide array of tools through XML technologies.


semantic interoperability electronic health records multilevel modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ACMI, electronic medical records, (last accessed: April 1, 2013)
  2. 2.
    De Leon, S., Connelly-Flores, A., Mostashari, F., Shih, S.C.: The business end of health information technology. Can a fully integrated electronic health record increase provider productivity in a large community practice? J. Med. Pract. Manage 25, 342–349 (2010)Google Scholar
  3. 3.
    Javitt, J.C.: How to succeed in health information technology. Health Aff. (Millwood) (2004); Suppl. Web Exclusives:W4-321-4Google Scholar
  4. 4.
    U.S. National Library of Medicine. 2011AA SNOMED CT Source Information, (last accessed: April 28, 2013)
  5. 5.
    Maojo, V., Kulikowski, C.: Medical informatics and bioinformatics: integration or evolution through scientific crises? Methods Inf. Med. 45, 474–482 (2006)Google Scholar
  6. 6.
    Fitzmaurice, J.M., Adams, K., Eisenberg, J.: Three decades of research on computer applications in health care: medical informatics support at the Agency for Healthcare Research and Quality. J. Am. Med. Inform. Assoc. 9, 144–160 (2002)CrossRefGoogle Scholar
  7. 7.
    Preker, A., Harding, A.: The economics of hospital reform from hierarchical to market-based incentives. World Hosp. Health Serv. 39, 3–10 (2003)Google Scholar
  8. 8.
    Harris, N.M., Thorpe, R., Dickinson, H., Rorison, F., Barrett, C., Williams, C.: Hospital and after: experience of patients and carers in rural and remote North Queensland, Australia. Rural Remote Health 4, 246 (2004)Google Scholar
  9. 9.
    Zusman, E.: Form facilitates function: innovations in architecture and design drive quality and efficiency in healthcare. Neurosurgery 66, N24 (2010)CrossRefGoogle Scholar
  10. 10.
    Ward, M.M., Vartak, S., Schwichtenberg, T., Wakefield, D.: Nurses’ perceptions of how clinical information system implementation affects workflow and patient care. Comput. Inform. Nurs. 29, 502–511 (2011)CrossRefGoogle Scholar
  11. 11.
    Jung, M., Choi, M.: A mechanism of institutional isomorphism in referral networks among hospitals in Seoul, South Korea. Health Care Manag (Frederick) 29, 133–146 (2010)Google Scholar
  12. 12.
    Hoangmai, H.P., O’Malley, A.S., Bach, P.B., Saiontz-Martinez, C., Schrag, D.: Primary care physicians’ links to other physicians through medicare patients: the scope of care coordination. Ann. Intern. Med. 150, 236–242 (2009)CrossRefGoogle Scholar
  13. 13.
    Sittig, D.F., Singh, H.: A new sociotechnical model for studying health information technology in complex adaptive healthcare systems. QualSaf Health Care (suppl. 3), i68–i74 (2010)Google Scholar
  14. 14.
    Hyman, W.: When medical devices talk to each other: the promise and challenges of interoperability. Biomed. Instrum. Technol. (suppl.), 28–31 (2010)Google Scholar
  15. 15.
    Charters, K.: Home telehealth electronic health information lessons learned. Stud. Health Technol. Inform. 146, 719 (2009)Google Scholar
  16. 16.
    Raths, D.: Shifting away from silos. The interoperability challenges that hospitals face pale in comparison to the headaches plaguing State Departments. Healthc Inform. 27, 32–33 (2010)Google Scholar
  17. 17.
    Achimugu, P., Soriyan, A., Oluwagbemi, O., Ajayi, A.: Record linkage system in a complex relational database: MINPHIS example. Stud. Health Technol. Inform. 160, 1127–1130 (2010)Google Scholar
  18. 18.
    Metaxiotis, K., Ptochos, D., Psarras, J.: E-health in the new millennium: a research and practice agenda. Int. J. Electron. Healthc 1, 165–175 (2004)CrossRefGoogle Scholar
  19. 19.
    Hufnagel, S.P.: Interoperability. Mil. Med. 174, 43–50 (2009)Google Scholar
  20. 20.
    Kadry, B., Sanderson, I.C., Macario, A.: Challenges that limit meaningful use of health information technology. Curr. Opin. Anaesthesiol. 23, 184–192 (2010)CrossRefGoogle Scholar
  21. 21.
    Blobel, B., Pharow, P.: Analysis and evaluation of EHR approaches. Stud. Health Technol. Inform. 136, 359–364 (2008)Google Scholar
  22. 22.
    Rodrigues, J.M., Kumar, A., Bousquet, C., Trombert, B.: Using the CEN/ISO standard for categorial structure to harmonise the development of WHO international terminologies. Stud. Health Technol. Inform. 159, 255–259 (2009)Google Scholar
  23. 23.
    Blobel, B.: Ontologies, knowledge representation, artificial intelligence: hype or prerequisites for international pHealth interoperability? Stud. Health Technol. Inform. 165, 11–20 (2011)Google Scholar
  24. 24.
    National Health Service Media Centre. Dismantling the NHS national programme for IT, (last accessed: May 15, 2013)
  25. 25.
    Lohrs, S.: Google to end health records service after it fails to attract users. The New York Times (June 24, 2011), (last accessed: April 28, 2013)
  26. 26.
    Kalra, D., Beale, T., Heard, S.: The open EHR Foundation. Stud. Health Technol. Inform. 115, 153–173 (2005)Google Scholar
  27. 27.
    Martinez-Costa, C., Menarguez-Tortosa, M., Fernandez-Breis, J.T.: Towards ISO 13606 and open EHR archetype-based semantic interoperability. Stud. Health Technol. Inform. 150, 260–264 (2009)Google Scholar
  28. 28.
    Cavalini, L.T., Cook, T.W.: Health informatics: The relevance of open source and multilevel modeling. In: Hissam, S.A., Russo, B., de Mendonça Neto, M.G., Kon, F. (eds.) OSS 2011. IFIP AICT, vol. 365, pp. 338–347. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Dias, R.D., Cook, T.W., Freire, S.: Modeling healthcare authorization and claim submissions using the openEHR dual-model approach. BMC Med. Inform. Decis. Mak. 11, 60 (2011)CrossRefGoogle Scholar
  30. 30.
    Kashfi, H., Torgersson, O.: A migration to an open EHR-based clinical application. Stud. Health Technol. Inform. 150, 152–156 (2009)Google Scholar
  31. 31.
    Eichelberg, M., Aden, T., Riesmeier, J., Dogac, A., Laleci, G.: A survey and analysis of electronic healthcare record standards. ACM Comput. Surv. 37, 277–315 (2005)CrossRefGoogle Scholar
  32. 32.
    Yu, S., Berry, D., Bisbal, J.: Clinical coverage of an archetype repository over SNOMED-CT. J. Biomed. Inform. 45, 408–418 (2012)CrossRefGoogle Scholar
  33. 33.
    Menezes, A.L., Cirilo, C.E., Moraes, J.L.C., Souza, W.L., Prado, A.: Using archetypes and domain specific languages on development of ubiquitous applications to pervasive healthcare. In: Proc. IEEE 23rd Int. Symp. Comput. Bas. Med. Syst., pp. 395–400 (2010)Google Scholar
  34. 34.
    Cavalini, L.T., Cook, T.: Knowledge engineering of healthcare applications based on minimalist multilevel models. In: IEEE 14th Int. Conf. e-Health Networ. Appl. Serv., pp. 431–434 (2012)Google Scholar
  35. 35.
    Sanderson, D.: Loss of data semantics in syntax directed translation. PhD Thesis in Computer Sciences. Renesselaer Polytechnic Institute, New York (1994)Google Scholar
  36. 36.
    Cook, T.W., Cavalini, L.: Implementing a specification for exceptional data in multilevel modeling of healthcare applications. ACM Sighit Rec. 2, 11 (2012)CrossRefGoogle Scholar
  37. 37.
    Lee, T., Hon, C.T., Cheung, D.X.: Schema design and management for e-government data interoperability. Electr. Je.-Gov., 381–391 (2009)Google Scholar
  38. 38.
    Daconta, M.C., Obrst, L.J., Smith, K.T.: The Semantic Web. Wiley, Indianapolis (2003)Google Scholar
  39. 39.
    Rutle, A., MacCaull, W., Wang, H.: A metamodelling approach to behaviouralmodeling. In: Proc. 4th Worksh. Behav. Mod. Foundat. Appl., vol. 5 (2012)Google Scholar
  40. 40.
    Seligman, L., Roenthal, A.: XML’s impact on databases and data sharing. Computer, 59–67 (2001)Google Scholar
  41. 41.
    Fenton, S., Giannangelo, K., Kallem, C., Scichilone, R.: Data standards, data quality, and interoperability. J. Ahima (2007); extended online editionGoogle Scholar
  42. 42.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web Ontology Language Primer, 2 edn., (last accessed: October 17, 2013)
  43. 43.
    Manola, F., Miller, E.: RDF Primer, (last accessed: October 17, 2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luciana Tricai Cavalini
    • 1
  • Timothy Wayne Cook
    • 2
  1. 1.Department of Health Information Technology, Medical Sciences CollegeRio de Janeiro State UniversityBrazil
  2. 2.National Institute of Science and Technology –, Medicine Assisted by Scientific ComputingBrazil

Personalised recommendations