Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

Pacific-Rim Symposium on Image and Video Technology

PSIVT 2013: Image and Video Technology – PSIVT 2013 Workshops pp 228–239Cite as

  1. Home
  2. Image and Video Technology – PSIVT 2013 Workshops
  3. Conference paper
Discrete Rigid Transformation Graph Search for 2D Image Registration

Discrete Rigid Transformation Graph Search for 2D Image Registration

  • Phuc Ngo18,19,
  • Akihiro Sugimoto18,
  • Yukiko Kenmochi19,
  • Nicolas Passat20 &
  • …
  • Hugues Talbot19 
  • Conference paper
  • 903 Accesses

  • 1 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8334)

Abstract

Rigid image registration is an essential image processing task, with a large body of applications. This problem is usually formulated in the continuous domain, often in the context of an optimization framework. This approach leads to sometimes unwanted artifacts, e.g. due to interpolation. In the case of purely discrete applications, e.g., for template-based segmentation or classification, it is however preferable to avoid digitizing the result again after transformation. In this article, we deal with this point of view in the 2D case. Based on a fully discrete framework, we explicitly explore the parameter space of rigid transformations. This exploration leads to a local search scheme that can be involved in combinatorial optimization strategies.

Keywords

  • Rigid registration
  • digital image
  • combinatorial optimisation on graph
  • parameter space subdivision

Download conference paper PDF

References

  1. Hajnal, J.V., Hill, D.L.G., Hawkes, D.J.: Medical Image Registration. CRC Press (2001)

    Google Scholar 

  2. Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing, 3rd edn. Elsevier Academic Press (2007)

    Google Scholar 

  3. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4), 1–45 (2006)

    CrossRef  Google Scholar 

  4. Zitová, B., Flusser, J.: Image registration methods: A survey. Image and Vision Computing 21(11), 977–1000 (2003)

    CrossRef  Google Scholar 

  5. Bazin, P.-L., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Transactions on Medical Imaging 26(4), 487–496 (2007)

    CrossRef  Google Scholar 

  6. Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology preserving warping of 3-D binary images according to continuous one-to-one mappings. IEEE Transactions on Image Processing 20(8), 2135–2145 (2011)

    CrossRef  MathSciNet  Google Scholar 

  7. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Computer Vision and Image Understanding 117(4), 393–408 (2013)

    CrossRef  Google Scholar 

  8. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial properties of 2D discrete rigid transformations under pixel-invariance constraints. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 234–248. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  9. Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolution PDEs via geo-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 409–422. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  10. Amintoosi, M., Fathy, M., Mozayani, N.: A fast image registration approach based on SIFT key-points applied to super-resolution. Imaging Science Journal 60(4), 185–201 (2011)

    CrossRef  Google Scholar 

  11. Pedro, F.F., Daniel, P.H.: Distance transforms of sampled functions. Theory of Computing 8(19), 415–428 (2012)

    MathSciNet  Google Scholar 

  12. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. John Wiley & Sons, Inc. (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. National Institute of Informatics, Japan

    Phuc Ngo & Akihiro Sugimoto

  2. LIGM, Université Paris-Est, France

    Phuc Ngo, Yukiko Kenmochi & Hugues Talbot

  3. CReSTIC, Université de Reims Champagne-Ardenne, France

    Nicolas Passat

Authors
  1. Phuc Ngo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Akihiro Sugimoto
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yukiko Kenmochi
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Nicolas Passat
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Hugues Talbot
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science & Information Engineering, National Ilan University, Shen-Lung Rd. 1, 26047, Yi-Lan, Taiwan R.O.C.

    Fay Huang

  2. National Institute of Informatics Tokyo, 101-8430, Tokyo, Japan

    Akihiro Sugimoto

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ngo, P., Sugimoto, A., Kenmochi, Y., Passat, N., Talbot, H. (2014). Discrete Rigid Transformation Graph Search for 2D Image Registration. In: Huang, F., Sugimoto, A. (eds) Image and Video Technology – PSIVT 2013 Workshops. PSIVT 2013. Lecture Notes in Computer Science, vol 8334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53926-8_21

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-53926-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53925-1

  • Online ISBN: 978-3-642-53926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2023 Springer Nature