Skip to main content

Medical Image Segmentation Using Multi-level Set Partitioning with Topological Graph Prior

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8334)

Abstract

In this paper, we propose an approach for multi-region segmentation based on a topological graph prior within a multi-level set (MLS) formulation. We consider topological graph prior information to evolve the contour based on a topological relationship presented via a graph relation. This novel method is capable of segmenting adjacent objects with very close gray level that would be difficult to segment correctly using standard methods. We describe our algorithm and show the graph prior technique to explain how it gives precise multi-region segmentation. We validate our algorithm with numerous abdominal and brain image databases and compare it to other multi-region segmentation methods to demonstrate its accuracy and computational efficiency.

Keywords

  • Segmentation
  • multi-region
  • topological graph
  • level set
  • medical image

References

  1. Andrews, S., McIntosh, C., Hamarneh, G.: Convex multiregion probabilistic segmentation with shape prior in isometric log-ratio transformation space. In: ICCV, pp. 2096–2103 (2011)

    Google Scholar 

  2. Chan, T., Vese, L.: Active contours without edges. IEEE Transaction on Image Processing 10(2), 266–277 (2001)

    CrossRef  MATH  Google Scholar 

  3. Rathke, F., Schmidt, S., Schnörr, C.: Order Preserving and Shape Prior Constrained Intra-retinal Layer Segmentation in Optical Coherence Tomography. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 370–377. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  4. Li, B.N., Chui, C.K., Chang, S., Ong, S.H.: Integrating Spatial Fuzzy Clustering With Level Set Methods For Automated Medical Image Segmentation. ELSEVIER Computer in Biology and Medicine 41, 1–10 (2011)

    CrossRef  Google Scholar 

  5. Suzuki, M., Linguraru, M.G., Summers, R.M., Okada, K.: Analyses of Missing Organs in Abdominal Multi-Organ Segmentation. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 256–263. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  6. Shimizua, A., Ohnoa, R., Ikegamia, T., Kobatakea, H., Nawanob, S., Smutekc, D.: Segmentation of Multiple Organs in Non-Contrast 3D Abdominal CT Images. Int. J. CARS 2, 135–142 (2007)

    CrossRef  Google Scholar 

  7. Linguraru, M.G., Pura, J.A., Chowdhury, A.S., Summers, R.M.: Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 89–96. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  8. Kohlberger, T., Sofka, M., Zhang, J., Birkbeck, N., Wetzl, J., Kaftan, J., Declerck, J., Zhou, S.K.: Automatic Multi-organ Segmentation Using Learning-Based Segmentation and Level Set Optimization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 338–345. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  9. Okada, T., Linguraru, M.G., Yoshida, Y., Hori, M., Summers, R.M., Chen, Y.-W., Tomiyama, N., Sato, Y.: Abdominal Multi-Organ Segmentation of CT Images Based on Hierarchical Spatial Modeling of Organ Interrelations. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 173–180. Springer, Heidelberg (2012)

    Google Scholar 

  10. Bazin, P.L., Pham, D.L.: Homeomorphic Brain Image Segmentation with Topological and Statistical Atlases. In: MICCAI 2007 (2007); Medical Image Analysis 12(5), 616-625 (2008)

    Google Scholar 

  11. Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transaction on System, Man and Cybernetics 9, 62–66 (1979)

    CrossRef  Google Scholar 

  12. Egenhofer, M., Herring, J.: Categorizing Binary Topological Relations between Regions, Lines and Points in Geographic Databases. Technical report, Dept. of Surveying Eng., Univ. of Maine (1991)

    Google Scholar 

  13. Mansouri, R., Mitiche, A., Vazquez, C.: Multiregion Competition: A Level Set Extension of Region Competition to Multiple Region Image Partitioning. Computer Vision and Image Understanding 101, 137–150 (2006)

    CrossRef  Google Scholar 

  14. Vazquez, C., Mitiche, A., Ayed, I.B.: Image Segmentation as Regularized Clustering: A Fully Global Curve Evaluation Method. ICIP 5, 3467–3470 (2004)

    Google Scholar 

  15. Zhu, S.C., Yuille, A.: Region Competition: Unifying Snakes, Region Growing, and Bayes/mdl for Multiband Image segmentation. PAMI 18, 884–900 (1996)

    CrossRef  Google Scholar 

  16. Majumdar, A.K., Bhattacharya, I., Saha, A.K.: An Object-Oriented Fuzzy Data Model for Similarity Detection in Image Databases. IEEE Trasaction on Knowledge and Data Engineering 14(5), 1186–1189 (2002)

    CrossRef  Google Scholar 

  17. MedPix Medical Image Database (1999)

    Google Scholar 

  18. Snyder, W.E.: NC state university Image Analysis Laboratory Database (2002)

    Google Scholar 

  19. Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database. NeuroImage 5, S425 (1997)

    Google Scholar 

  20. Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M.C., Kaus, M.R., Haker, S.J., Wells, W.M., Jolesz, F.A., Kikinis, R.: Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index. Academic Radiology 11, 178–189 (2004)

    CrossRef  Google Scholar 

  21. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration. PAMI 34(2), 315–327 (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Al-Shaikhli, S.D.S., Yang, M.Y., Rosenhahn, B. (2014). Medical Image Segmentation Using Multi-level Set Partitioning with Topological Graph Prior. In: Huang, F., Sugimoto, A. (eds) Image and Video Technology – PSIVT 2013 Workshops. PSIVT 2013. Lecture Notes in Computer Science, vol 8334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53926-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53926-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53925-1

  • Online ISBN: 978-3-642-53926-8

  • eBook Packages: Computer ScienceComputer Science (R0)