Gene Therapy for Bone Tissue Engineering

  • Yu-Chen Hu
Part of the SpringerBriefs in Bioengineering book series (BRIEFSBIOENG)


Gene therapy has been employed in conjunction with bone engineering over the past decade, by which a variety of therapeutic genes are delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approaches using either viral or nonviral vectors. This chapter reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, vectors and gene delivery approaches.


Vascular Endothelial Growth Factor Demineralized Bone Matrix Calvarial Bone Ectopic Bone Formation PLGA Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lu C-H, Chang Y-H, Lin S-Y, Li K-C, Hu Y-C (2013) Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 31:1695–1706Google Scholar
  2. 2.
    Baltzer AWA, Lattermann C, Whalen JD, Wooley P, Weiss K, Grimm M et al (2000) Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther 7:734–739Google Scholar
  3. 3.
    Betz OB, Betz VM, Nazarian A, Pilapil CG, Vrahas MS, Bouxsein ML et al (2006) Direct percutaneous gene delivery to enhance healing of segmental bone defects. J Bone Joint Surg Am 88A:355–365Google Scholar
  4. 4.
    Betz VM, Betz OB, Glatt V, Gerstenfeld LC, Einhorn TA, Bouxsein ML et al (2007) Healing of segmental bone defects by direct percutaneous gene delivery: effect of vector dose. Hum Gene Ther 18:907–915Google Scholar
  5. 5.
    Betz OB, Betz VM, Nazarian A, Egermann M, Gerstenfeld LC, Einhorn TA et al (2007) Delayed administration of adenoviral BMP-2 vector improves the formation of bone in osseous defects. Gene Ther 14:1039–1044Google Scholar
  6. 6.
    Ishihara A, Shields KM, Litsky AS, Mattoon JS, Weisbrode SE, Bartlett JS et al (2008) Osteogenic gene regulation and relative acceleration of healing by adenoviral-mediated transfer of human BMP-2 or -6 in equine osteotomy and ostectomy models. J Orthop Res 26:764–771Google Scholar
  7. 7.
    Egermann M, Lill CA, Griesbeck K, Evans CH, Robbins PD, Schneider E et al (2006) Effect of BMP-2 gene transfer on bone healing in sheep. Gene Ther 13:1290–1299Google Scholar
  8. 8.
    Bertone AL, Pittman DD, Bouxsein ML, Li J, Clancy B, Seeherman HJ (2004) Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model. J Orthop Res 22:1261–1270Google Scholar
  9. 9.
    Alden TD, Beres EJ, Laurent JS, Engh JA, Das S, London SD et al (2000) The use of bone morphogenetic protein gene therapy in craniofacial bone repair. J Craniofac Surg 11:24–30Google Scholar
  10. 10.
    Jane JA, Dunford BA, Kron A, Pittman DD, Sasaki T, Li JZ et al (2002) Ectopic osteogenesis using adenoviral bone morphogenetic protein (BMP)-4 and BMP-6 gene transfer. Mol Ther 6:464–470Google Scholar
  11. 11.
    Liu YG, Zhou Y, Hu X, Fu JJ, Pan Y, Chu TW (2011) Effect of vascular endothelial growth factor 121 adenovirus transduction in rabbit model of femur head necrosis. J Trauma 70:1519–1523Google Scholar
  12. 12.
    Rundle CH, Miyakoshi N, Kasukawa Y, Chen ST, Sheng MHC, Wergedal JE et al (2003) In vivo bone formation in fracture repair induced by direct retroviral-based gene therapy with bone morphogenetic protein-4. Bone 32:591–601Google Scholar
  13. 13.
    Rundle CH, Strong DD, Chen ST, Linkhart TA, Sheng MHC, Wergedal JE et al (2008) Retroviral-based gene therapy with cyclooxygenase-2 promotes the union of bony callus tissues and accelerates fracture heating in the rat. J Gene Med 10:229–241Google Scholar
  14. 14.
    Lin L, Shen Q, Leng H, Duan X, Fu X, Yu C (2011) Synergistic inhibition of endochondral bone formation by silencing HIF-1α and Runx2 in trauma-induced heterotopic ossification. Mol Ther 19:1426–1432Google Scholar
  15. 15.
    Gafni Y, Pelled G, Zilberman Y, Turgeman G, Apparailly F, Yotvat H et al (2004) Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther 9:587–595Google Scholar
  16. 16.
    Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W et al (2011) Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther 19:53–59Google Scholar
  17. 17.
    Musgrave DS, Bosch P, Ghivizzani S, Robbins PD, Evans CH, Huard J (1999) Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone. Bone 24:541–547Google Scholar
  18. 18.
    Zou D, Zhang Z, Ye D, Tang A, Deng L, Han W et al (2011) Repair of critical-sized rat calvarial defects using genetically engineered BMSCs overexpressing HIF-1α. Stem Cells 29:1380–1390Google Scholar
  19. 19.
    Bright C, Park YS, Sieber AN, Kostuik JP, Leong KW (2006) In vivo evaluation of plasmid DNA encoding OP-1 protein for spine fusion. Spine (Phila Pa 1976) 31:2163–2172Google Scholar
  20. 20.
    Pelled G, Ben-Arav A, Hock C, Reynolds DG, Yazici C, Zilberman Y et al (2010) Direct gene therapy for bone regeneration: gene delivery, animal models, and outcome measures. Tissue Eng Part B Rev 16:13–20Google Scholar
  21. 21.
    Evans CH (2010) Gene therapy for bone healing. Expert Rev Mol Med 12:e18Google Scholar
  22. 22.
    Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA et al (1996) Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci U S A 93:5753–5758Google Scholar
  23. 23.
    Bonadio J, Smiley E, Patil P, Goldstein S (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5:753–759Google Scholar
  24. 24.
    Backstrom KC, Bertone AL, Wisner ER, Weisbrode SE (2004) Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene. Am J Vet Res 65:1223–1232Google Scholar
  25. 25.
    Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C et al (2005) Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 20:2028–2035Google Scholar
  26. 26.
    Endo M, Kuroda S, Kondo H, Maruoka Y, Ohya K, Kasugai S (2006) Bone regeneration by modified gene-activated matrix: effectiveness in segmental tibial defects in rats. Tissue Eng 12:489–497Google Scholar
  27. 27.
    Keeney M, van den Beucken JJ, van der Kraan PM, Jansen JA, Pandit A (2010) The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165). Biomaterials 31:2893–2902Google Scholar
  28. 28.
    Itaka K, Ohba S, Miyata K, Kawaguchi H, Nakamura K, Takato T et al (2007) Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Mol Ther 15:1655–1662Google Scholar
  29. 29.
    Huang YC, Simmons C, Kaigler D, Rice KG, Mooney DJ (2005) Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Gene Ther 12:418–426Google Scholar
  30. 30.
    Chew SA, Kretlow JD, Spicer PP, Edwards AW, Baggett LS, Tabata Y et al (2011) Delivery of plasmid DNA encoding bone morphogenetic protein-2 with a biodegradable branched polycationic polymer in a critical-size rat cranial defect model. Tissue Eng Part A 17:751–763Google Scholar
  31. 31.
    Zhang W, Tsurushima H, Oyane A, Yazaki Y, Sogo Y, Ito A et al (2011) BMP-2 gene-fibronectin-apatite composite layer enhances bone formation. J Biomed Sci 18:62Google Scholar
  32. 32.
    Wang X, Oyane A, Tsurushima H, Sogo Y, Li X, Ito A (2011) BMP-2 and ALP gene expression induced by a BMP-2 gene-fibronectin-apatite composite layer. Biomed Mater 6:045004Google Scholar
  33. 33.
    Zhang Y, Fan W, Nothdurft L, Wu C, Zhou Y, Crawford R et al (2011) In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery. Tissue Eng Part C Methods 17:789–797Google Scholar
  34. 34.
    Zhang Y, Cheng N, Miron R, Shi B, Cheng X (2012) Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 33:6698–6708Google Scholar
  35. 35.
    Zhang Y, Shi B, Li C, Wang Y, Chen Y, Zhang W et al (2009) The synergetic bone-forming effects of combinations of growth factors expressed by adenovirus vectors on chitosan/collagen scaffolds. J Control Release 136:172–178Google Scholar
  36. 36.
    Luo T, Zhang W, Shi B, Cheng X, Zhang Y (2012) Enhanced bone regeneration around dental implant with bone morphogenetic protein 2 gene and vascular endothelial growth factor protein delivery. Clin Oral Implants Res 23:467–473Google Scholar
  37. 37.
    Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T et al (2007) The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J 7:50–60Google Scholar
  38. 38.
    Evans CH, Liu FJ, Glatt V, Hoyland JA, Kirker-Head C, Walsh A et al (2009) Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur Cell Mater 18:96–111Google Scholar
  39. 39.
    Liu F, Porter RM, Wells J, Glatt V, Pilapil C, Evans CH (2012) Evaluation of BMP-2 gene-activated muscle grafts for cranial defect repair. J Orthop Res 30:1095–1102Google Scholar
  40. 40.
    Ito H, Koefoed M, Tiyapatanaputi P, Gromov K, Goater JJ, Carmouche J et al (2005) Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med 11:291–297Google Scholar
  41. 41.
    Koefoed M, Ito H, Gromov K, Reynolds DG, Awad HA, Rubery PT et al (2005) Biological effects of rAAV-caAlk2 coating on structural allograft healing. Mol Ther 12:212–218Google Scholar
  42. 42.
    Yazici C, Takahata M, Reynolds DG, Xie C, Samulski RJ, Samulski J et al (2011) Self-complementary AAV2.5-BMP2-coated femoral allografts mediated superior bone healing versus live autografts in mice with equivalent biomechanics to unfractured femur. Mol Ther 19:1416–1425Google Scholar
  43. 43.
    Ben Arav A, Pelled G, Zilberman Y, Kimelman-Bleich N, Gazit Z, Schwarz EM et al (2012) Adeno-associated virus-coated allografts: a novel approach for cranioplasty. J Tissue Eng Regen Med 6:e43–e50Google Scholar
  44. 44.
    Chen F, Zhang X, Sun S, Zara JN, Zou X, Chiu R et al (2011) NELL-1, an osteoinductive factor, is a direct transcriptional target of Osterix. PLoS One 6:e24638Google Scholar
  45. 45.
    Chang PC, Cirelli JA, Jin Q, Seol YJ, Sugai JV, D’Silva NJ et al (2009) Adenovirus encoding human platelet-derived growth factor-B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use. Hum Gene Ther 20:486–496Google Scholar
  46. 46.
    Evans CH (2012) Gene delivery to bone. Adv Drug Deliv Rev 64:1331–1340Google Scholar
  47. 47.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells 25:2896–2902Google Scholar
  48. 48.
    Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898Google Scholar
  49. 49.
    Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S (2010) Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 18:1026–1034Google Scholar
  50. 50.
    Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20Google Scholar
  51. 51.
    Prockop DJ (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 17:939–946Google Scholar
  52. 52.
    Lien CY, Chih-Yuan Ho K, Lee OK, Blunn GW, Su Y (2009) Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J Bone Miner Res 24:837–848Google Scholar
  53. 53.
    Cho SW, Sun HJ, Yang J-Y, Jung JY, An JH, Cho HY et al (2009) Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice. Mol Ther 17:1979–1987Google Scholar
  54. 54.
    Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J et al (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18:456–462Google Scholar
  55. 55.
    Hall SL, Lau K-HW, Chen S-T, Wergedal JE, Srivastava A, Klamut H et al (2007) Sca-1+ hematopoietic cell-based gene therapy with a modified FGF-2 increased endosteal/trabecular bone formation in mice. Mol Ther 15:1881–1889Google Scholar
  56. 56.
    Phillips JE, Gersbach CA, Garcia AJ (2007) Virus-based gene therapy strategies for bone regeneration. Biomaterials 28:211–229Google Scholar
  57. 57.
    Evans CH, Ghivizzani SC, Robbins PD (2009) Orthopedic gene therapy in 2008. Mol Ther 17:231–244Google Scholar
  58. 58.
    Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D (2007) Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 13:1135–1150Google Scholar
  59. 59.
    Moutsatsos IK, Turgeman G, Zhou SH, Kurkalli BG, Pelled G, Tzur L et al (2001) Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther 3:449–461Google Scholar
  60. 60.
    Sheyn D, Ruthemann M, Mizrahi O, Kallai I, Zilberman Y, Tawackoli W et al (2010) Genetically modified mesenchymal stem cells induce mechanically stable posterior spine fusion. Tissue Eng Part A 16:3679–3686Google Scholar
  61. 61.
    Sheyn D, Pelled G, Zilberman Y, Talasazan F, Frank JM, Gazit D et al (2008) Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells 26:1056–1064Google Scholar
  62. 62.
    Sheyn D, Kallai I, Tawackoli W, Yakubovich DC, Oh A, Su SS et al (2011) Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Mol Pharm 8:1592–1601Google Scholar
  63. 63.
    Edwards PC, Ruggiero S, Fantasia J, Burakoff R, Moorji SM, Paric E et al (2005) Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther 12:75–86Google Scholar
  64. 64.
    Byers BA, Guldberg RE, Hutmacher DW, Garcia AJ (2006) Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects. J Biomed Mater Res A 76:646–655Google Scholar
  65. 65.
    Gysin R, Wergedal JE, Sheng MH, Kasukawa Y, Miyakoshi N, Chen ST et al (2002) Ex vivo gene therapy with stromal cells transduced with a retroviral vector containing the BMP4 gene completely heals critical size calvarial defect in rats. Gene Ther 9:991–999Google Scholar
  66. 66.
    Lee CW, Martinek V, Usas A, Musgrave D, Pickvance EA, Robbins P et al (2002) Muscle-based gene therapy and tissue engineering for treatment of growth plate injuries. J Pediatr Orthop 22:565–572Google Scholar
  67. 67.
    Wright VJ, Peng HR, Usas A, Young B, Gearhart B, Cummins J et al (2002) BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther 6:169–178Google Scholar
  68. 68.
    Peng H, Usas A, Gearhart B, Olshanski A, Shen HC, Huard J (2004) Converse relationship between in vitro osteogenic differentiation and in vivo bone healing elicited by different populations of muscle-derived cells genetically engineered to express BMP4. J Bone Miner Res 19:630–641Google Scholar
  69. 69.
    Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J et al (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110:751–759Google Scholar
  70. 70.
    Peng H, Usas A, Hannallah D, Olshanski A, Cooper GM, Huard J (2005) Noggin improves bone healing elicited by muscle stem cells expressing inducible BMP4. Mol Ther 12:239–246Google Scholar
  71. 71.
    Peng H, Usas A, Olshanski A, Ho AM, Gearhart B, Cooper GM et al (2005) VEGF improves, whereas sFlt1 inhibits, BMP-2 induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 20:2017–2027Google Scholar
  72. 72.
    Ye J-H, Xu Y-J, Gao J, Yan S-G, Zhao J, Tu Q et al (2011) Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 32:5065–5076Google Scholar
  73. 73.
    Turgeman G, Pittman DD, Muller R, Kurkalli BG, Zhou SH, Pelled G et al (2001) Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 3:240–251Google Scholar
  74. 74.
    Blum JS, Barry MA, Mikos AG, Jansen JA (2003) In vivo evaluation of gene therapy vectors in ex vivo-derived marrow stromal cells for bone regeneration in a rat critical-size calvarial defect model. Hum Gene Ther 14:1689–1701Google Scholar
  75. 75.
    Xu XL, Tang T, Dai K, Zhu Z, Guo XE, Yu C et al (2005) Immune response and effect of adenovirus-mediated human BMP-2 gene transfer on the repair of segmental tibial bone defects in goats. Acta Orthop 76:637–646Google Scholar
  76. 76.
    Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P et al (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11:120–129Google Scholar
  77. 77.
    Park J, Ries J, Gelse K, Kloss F, von der Mark K, Wiltfang J et al (2003) Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes. Gene Ther 10:1089–1098Google Scholar
  78. 78.
    Lieberman JR, Daluiski A, Stevenson S, Wu L, McAllister P, Lee YP et al (1999) The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 81A:905–917Google Scholar
  79. 79.
    Zhang XP, Xie C, Lin ASP, Ito H, Awad H, Lieberman JR et al (2005) Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 20:2124–2137Google Scholar
  80. 80.
    Steinhardt Y, Aslan H, Regev E, Zilberman Y, Kallai I, Gazit D et al (2008) Maxillofacial-derived stem cells regenerate critical mandibular bone defect. Tissue Eng Part A 14:1763–1773Google Scholar
  81. 81.
    Zhao Z, Wang Z, Ge C, Krebsbach P, Franceschi RT (2007) Healing cranial defects with AdRunx2-transduced marrow stromal cells. J Dent Res 86:1207–1211Google Scholar
  82. 82.
    Lattanzi W, Parrilla C, Fetoni A, Logroscino G, Straface G, Pecorini G et al (2008) Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther 15:1330–1343Google Scholar
  83. 83.
    He X, Dziak R, Yuan X, Mao K, Genco R, Swihart M et al (2013) BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects. PLoS One 8:e60473Google Scholar
  84. 84.
    Feeley BT, Conduah AH, Sugiyama O, Krenek L, Chen ISY, Lieberman JR (2006) In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. J Orthop Res 24:1709–1721Google Scholar
  85. 85.
    Virk MS, Conduah A, Park SH, Liu N, Sugiyama O, Cuomo A et al (2008) Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone 42:921–931Google Scholar
  86. 86.
    Hsu WK, Sugiyama O, Park SH, Conduah A, Feeley BT, Liu NQ et al (2007) Lentiviral-mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats. Bone 40:931–938Google Scholar
  87. 87.
    Virk MS, Sugiyama O, Park SH, Gambhir SS, Adams DJ, Drissi H et al (2011) “Same Day” ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol Ther 19:960–968Google Scholar
  88. 88.
    Zou D, Zhang Z, He J, Zhu S, Wang S, Zhang W et al (2011) Repairing critical-sized calvarial defects with BMSCs modified by a constitutively active form of hypoxia-inducible factor-1alpha and a phosphate cement scaffold. Biomaterials 32:9707–9718Google Scholar
  89. 89.
    Zou D, Zhang Z, He J, Zhang K, Ye D, Han W et al (2012) Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Biomaterials 33:2097–2108Google Scholar
  90. 90.
    Deng Y, Zhou H, Zou D, Xie Q, Bi X, Gu P et al (2013) The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects. Biomaterials 34:6717–6728Google Scholar
  91. 91.
    Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T et al (2013) The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials 34:5048–5058Google Scholar
  92. 92.
    Chuang C-K, Lin K-J, Lin C-Y, Chang Y-H, Yen T-C, Hwang S-M et al (2010) Xenotransplantation of human mesenchymal stem cells into immunocompetent rats for calvarial bone repair. Tissue Eng Part A 16:479–488Google Scholar
  93. 93.
    Lin C-Y, Chang Y-H, Lin K-J, Yen T-Z, Tai C-L, Chen C-Y et al (2010) The healing of critical-sized femoral segmental bone defects in rabbits using baculovirus-engineered mesenchymal stem cells. Biomaterials 31:3222–3230Google Scholar
  94. 94.
    Lin C-Y, Lin K-J, Kao C-Y, Chen M-C, Yen T-Z, Lo W-H et al (2011) The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects. Biomaterials 32:6505–6514Google Scholar
  95. 95.
    Lin C-Y, Lin K-J, Li K-C, Sung L-Y, Hsueh S, Lu C-H et al (2012) Immune responses during healing of massive segmental femoral bone defects mediated by hybrid baculovirus-engineered ASCs. Biomaterials 33:7422–7434Google Scholar
  96. 96.
    Lin C-Y, Chang Y-H, Kao C-Y, Lu C-H, Sung L-Y, Yen T-C et al (2012) Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Biomaterials 33:3682–3692Google Scholar
  97. 97.
    Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM (2010) Cranial bone defects: current and future strategies. Neurosurg Focus 29:E8Google Scholar
  98. 98.
    Patel ZS, Young S, Tabata Y, Jansen JA, Wong ME, Mikos AG (2008) Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43:931–940Google Scholar
  99. 99.
    Young S, Patel ZS, Kretlow JD, Murphy MB, Mountziaris PM, Baggett LS et al (2009) Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model. Tissue Eng Part A 15:2347–2362Google Scholar
  100. 100.
    Geuze RE, Theyse LF, Kempen DH, Hazewinkel HA, Kraak HY, Oner FC et al (2012) A differential effect of bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model. Tissue Eng Part A 18:2052–2062Google Scholar
  101. 101.
    Kempen DHR, Lu L, Heijink A, Hefferan TE, Creemers LB, Maran A et al (2009) Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 30:2816–2825Google Scholar
  102. 102.
    Li GH, Corsi-Payne K, Zheng B, Usas A, Peng HR, Huard J (2009) The dose of growth factors influences the synergistic effect of vascular endothelial growth factor on bone morphogenetic protein 4-induced ectopic bone formation. Tissue Eng Part A 15:2123–2133Google Scholar
  103. 103.
    Helmrich U, Di Maggio N, Guven S, Groppa E, Melly L, Largo RD et al (2013) Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. Biomaterials 34:5025–5035Google Scholar
  104. 104.
    Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel AJ, Deng M et al (2008) Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci 105:11099–11104Google Scholar
  105. 105.
    Chen C-Y, Lin C-Y, Chen G-Y, Hu Y-C (2011) Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 29:618–631Google Scholar
  106. 106.
    Lin C-Y, Lu C-H, Luo W-Y, Chang Y-H, Sung L-Y, Chiu H-Y et al (2010) Baculovirus as a gene delivery vector for cartilage and bone tissue engineering. Curr Gene Ther 10:242–254Google Scholar
  107. 107.
    Ho Y-C, Chung Y-C, Hwang S-M, Wang K-C, Hu Y-C (2005) Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J Gene Med 7:860–868Google Scholar
  108. 108.
    Allay JA, Dennis JE, Haynesworth SE, Majumdar MK, Clapp DW, Shultz LD et al (1997) LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum Gene Ther 8:1417–1427Google Scholar
  109. 109.
    Tsuda H, Wada T, Ito Y, Uchida H, Dehari H, Nakamura K et al (2003) Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 7:354–365Google Scholar
  110. 110.
    Lo W-H, Hwang S-M, Chuang C-K, Chen C-Y, Hu Y-C (2009) Development of a hybrid baculoviral vector for sustained transgene expression. Mol Ther 17:658–666Google Scholar
  111. 111.
    Chuang C-K, Sung L-Y, Hwang S-M, Lo W-H, Chen H-C, Hu Y-C (2007) Baculovirus as a new gene delivery vector for stem cells engineering and bone tissue engineering. Gene Ther 14:1417–1424Google Scholar
  112. 112.
    Prigozhina TB, Khitrin S, Elkin G, Eizik O, Morecki S, Slavin S (2008) Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Exp Hematol 36:1370–1376Google Scholar
  113. 113.
    Niemeyer P, Kornacker M, Mehlhorn A, Seckinger A, Vohrer J, Schmal H et al (2007) Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng 13:111–121Google Scholar
  114. 114.
    Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT et al (2010) Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579Google Scholar
  115. 115.
    Scotti C, Tonnarelli B, Papadimitropoulos A, Scherberich A, Schaeren S, Schauerte A et al (2010) Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci U S A 107:7251–7256Google Scholar
  116. 116.
    Lin C-Y, Chang Y-H, Li K-C, Lu C-H, Sung L-Y, Yeh C-L et al (2013) The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Biomaterials 34:9401–9412Google Scholar
  117. 117.
    Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T et al (2012) MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 8:212–227Google Scholar
  118. 118.
    Tashiro K, Inamura M, Kawabata K, Sakurai F, Yamanishi K, Hayakawa T et al (2009) Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells 27:1802–1811Google Scholar
  119. 119.
    Bilousova G, Jun DH, King KB, De Langhe S, Chick WS, Torchia EC et al (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29:206–216Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Yu-Chen Hu
    • 1
  1. 1.Department of Chemical EngineeringNational Tsing Hua UniversityTaiwanRepublic of China

Personalised recommendations