Application of Computational Mass Transfer (II): Chemical Absorption Process

Part of the Heat and Mass Transfer book series (HMT)


In this chapter, the two CMT models, i.e., \( \overline{{c^{{{\prime }2}} }} - \varepsilon_{{c^{\prime } }} \) model and Reynolds mass flux model (in standard, hybrid, and algebraic forms) are used for simulating the chemical absorption of CO2 in packed column by using MEA, AMP, and NaOH separately and their simulated results are closely checked with the experimental data. It is noted that the radial distribution of D t is similar to α t but quite different from μ t. It means that the conventional assumption on the analogy between the momentum transfer and the mass transfer in turbulent fluids is unjustified, and thus, the use of CMT method for simulation is necessary. In the analysis of the simulation results, some transport phenomena are interpreted in terms of the co-action or counteraction of the turbulent mass flux diffusion.


Simulation of absorption CO2 absorption Turbulent mass transfer diffusivity Concentration profile 



Surface area per unit volume of packed bed, m−1


Effective area for mass transfer between the gas phase and liquid phase, 1/m


Wetted surface area, m−1

\( \overline{{c^{2} }} \)

Concentration variance, kg2 m−6

\( \overline{C} \)

Average concentration of mass fraction, kg m−3

Cμ, c1, c2

Model parameters in k − ε model equations, dimensionless

Cc0, Cc1, Cc2, Cc3

Model parameters in \( \overline{{c^{2} }} - \varepsilon_{c} \) model equations, dimensionless

\( C_{\text{p}} \)

Liquid-phase specific heat, J/kg/K

Ct0, Ct1, Ct2, Ct3

Model parameters in \( \overline{{t^{2} }} - \varepsilon_{t} \) model equations, dimensionless


Molecular diffusivity, ms−1


Effective diffusivity, ms−1


Molecular diffusivity of CO2 in gas phase, m2 s−1


Turbulent diffusivity for mass transfer, m2 s−1


Equivalent diameter of random packing, m


Hydraulic diameter of random packing, m


Nominal diameter of the packed particle, m


Enhancement factor, dimensionless


Gas-phase flow rate per unit cross-sectional area, kg m2 s−1


Physical absorption heat of mol CO2 absorbed, J kmol−1


Chemical reaction heat of mol CO2 absorbed, J kmol−1


Static holdup, dimensionless


Total liquid holdup, dimensionless


Turbulent kinetic energy, m2/s2


Second-order reaction rate constant, m3 kmol s−1


Gas-phase mass transfer coefficient, kmol m s kPa−1


Liquid-phase mass transfer coefficient without chemical reaction, m s−1


Liquid-phase mass transfer coefficient with chemical reaction, m s−1


Liquid flow rate per unit cross-sectional area, kg m2 s−1


Position in radial direction, m


The rate of reaction, kmol m3 s−1


Radius of the column, m

\( \overline{{t^{2} }} \)

Temperature variance, dimensionless


Liquid temperature, K


Liquid superficial velocity, m s−1


Molar concentration in the liquid bulk, kmol m−3


Molar concentration at interface, kmol m−3


Distance measured from column top (x = 0 at the column top), m

α, αeff, αt

Molecular, turbulent, and effective thermal diffusivities, respectively, m2 s−1


Volume fraction of liquid phase based on pore space, dimensionless


Turbulent dissipation rate, m2 s−3


Turbulent dissipation rate of concentration fluctuation, kg2 m−6 s−1


Turbulent dissipation rate of temperature fluctuation, s−1


Variable, dimensionless


Turbulent diffusivity, m2 s−1


Liquid density, kg/m3


Gas-phase density, kg/m3


Surface tension of aqueous solutions, dynes/cm, or N/m

σc, \( \sigma_{{\varepsilon_{c} }} \)

Model parameters in \( \overline{{c^{2} }} - \varepsilon_{c} \) model equations, dimensionless

σt, \( \sigma_{{\varepsilon_{t} }} \)

Model parameters in \( \overline{{t^{2} }} - \varepsilon_{t} \) model equations, dimensionless

σk, σε

Model parameters in k − ε model equations, dimensionless


  1. 1.
    Yin FH, Sun CG, Afacan A, Nandakumar K, Chuang KT (2000) CFD modeling of mass-transfer processes in randomly packed distillation columns. Ind Eng Chem Res 39(5):1369–1380CrossRefGoogle Scholar
  2. 2.
    Liu SJ (2001) A continuum model for gas-liquid flow in packed towers. Chem Eng Sci 56:5945–5953CrossRefGoogle Scholar
  3. 3.
    Hjertager LK, Hjertager BH, Solberg T (2002) CFD modelling of fast chemical reactions in turbulent liquid flows. Com and Chem Eng 26(4–5):507–515CrossRefGoogle Scholar
  4. 4.
    Jiang Y, Khadilkar MR, Al-Dahhan MH, Dudukovic AP (2002) CFD of multiphase flow in packed-bed reactors: I. k-fluid modeling issues. AIChE J 48(4):701–715CrossRefGoogle Scholar
  5. 5.
    Jiang Y, Khadilkar MR, Al-Dahhan MH, Dudukovic MP (2002) CFD of multiphase flow in packed-bed reactors: II. Results and applications. AIChE J 48(4):716–730CrossRefGoogle Scholar
  6. 6.
    Yin FH, Afacan A, Nandakumar K, Chuang KT (2002) Liquid holdup distribution in packed columns: gamma ray tomography and CFD simulation. Chem Eng Process 41(5):473–483CrossRefGoogle Scholar
  7. 7.
    de Lemos MJS, Mesquita MS (2003) Turbulent mass transport in saturated rigid porous media. Int J Heat Mass Transfer 30(1):105–113Google Scholar
  8. 8.
    Liu GB, Yu KT, Yuan XG, Liu CJ (2006) Simulations of chemical absorption in pilot-scale and industrial-scale packed columns by computational mass transfer. Chem Eng Sci 61(19):6511–6529CrossRefGoogle Scholar
  9. 9.
    Liu GB, Yu KT, Yuan XG, Liu CJ (2006) New model for turbulent mass transfer and its application to the simulations of a pilot-scale randomly packed column for CO2-NaOH chemical absorption. Ind Eng Chem Res 45(9):3220–3229CrossRefGoogle Scholar
  10. 10.
    Li WB (2012) Theory and applications of computational mass transfer, PhD dissertation, Tianjin University, Tianjin, ChinaGoogle Scholar
  11. 11.
    Chen CJ, Jaw SY (1998) Fundamentals of turbulence modeling. Taylor and Francis, Washington, DCGoogle Scholar
  12. 12.
    Sater VE, Levenspiel O (1966) Two-phase flow in packed beds. Ind Eng Chem Fundam 5:86–92CrossRefGoogle Scholar
  13. 13.
    Engel V, Stichmair J, Geipel W (1997) A new model to predict liquid holdup in packed columns—using data based on capacitance measurement techniques. Institute Chemical Engineering Symposium Series, Part 2, p. 939–947Google Scholar
  14. 14.
    Giese M, Rottschafer K, Vortmeyer D (1998) Measured and modeled superficial flow profiles in packed beds with liquid flow. AIChE J 44:484–490CrossRefGoogle Scholar
  15. 15.
    Roblee LHS, Baird RM, Tierney JW (1958) Radial porosity variations in packed beds. AIChE J 4:460–464CrossRefGoogle Scholar
  16. 16.
    de Klerk A (2003) Voidage variation in packed beds at small column to particle diameter ratio. AIChE J 49:022–2029Google Scholar
  17. 17.
    Wellek RM, Brunson RJ, Law FH (1978) Enhancement factors for gas absorption with 2nd-order irreversible chemical-reaction. Can J Chem Eng 56:181–186CrossRefGoogle Scholar
  18. 18.
    Ferchichi M, Tavoularis S (2002) Scalar probability density function and fine structure in uniformly sheared turbulence. J Fluid Mech 461:155–182CrossRefGoogle Scholar
  19. 19.
    Hikita H, Asai S, Katsu Y, Ikuno S (1979) Absorption of carbon-dioxide into aqueous monoethanolamine solutions. AIChE J 25:793–800CrossRefGoogle Scholar
  20. 20.
    Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Japan 1:56–62CrossRefGoogle Scholar
  21. 21.
    Danckwerts PV (1979) Reaction of CO2 with ethanolamines. Chem Eng Sci 34(4):443–446CrossRefGoogle Scholar
  22. 22.
    Kohl AL, Nielsen RB (1997) Gas purification. Gulf Publishing Company, HoustonGoogle Scholar
  23. 23.
    Pintola T, Tontiwachwuthikul P, Meisen A (1993) Simulation of pilot plant and industrial CO2-MEA absorbers. Gas Sep Purif 7:47–52CrossRefGoogle Scholar
  24. 24.
    Tontiwachwuthikul P, Meisen A, Lim CJ (1992) CO2 absorption by NaOH, monoethanolamine and 2-Amino-2-Methyl-1-Propanol Solutions in a packed-column. Chem Eng Sci 47(2):381–390CrossRefGoogle Scholar
  25. 25.
    Saha AK, Bandyopadhyay SS, Biswas AK (1995) Kinetics of absorption of CO2 into aqueous-solutions of 2-Amino-2-Methyl-1-Propanol. Chem Eng Sci 50(22):3587–3598CrossRefGoogle Scholar
  26. 26.
    Liu GB (2006) Computational transport and its application to mass transfer and reaction processes in packed beds. PhD dissertation, Tianjin University, Tianjin, ChinaGoogle Scholar
  27. 27.
    Pohorecki R, Moniuk W (1988) Kinetics of reaction between carbon-dioxide and hydroxyl ions in aqueous-electrolyte solutions. Chem Eng Sci 43(7):1677–1684CrossRefGoogle Scholar
  28. 28.
    Jones WP, Launder BE (1973) The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Transfer 16:1119–1130Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations