Skip to main content

Application of Computational Mass Transfer (II): Chemical Absorption Process

  • Chapter
  • First Online:
Book cover Introduction to Computational Mass Transfer

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1878 Accesses

Abstract

In this chapter, the two CMT models, i.e., \( \overline{{c^{{{\prime }2}} }} - \varepsilon_{{c^{\prime } }} \) model and Reynolds mass flux model (in standard, hybrid, and algebraic forms) are used for simulating the chemical absorption of CO2 in packed column by using MEA, AMP, and NaOH separately and their simulated results are closely checked with the experimental data. It is noted that the radial distribution of D t is similar to α t but quite different from μ t. It means that the conventional assumption on the analogy between the momentum transfer and the mass transfer in turbulent fluids is unjustified, and thus, the use of CMT method for simulation is necessary. In the analysis of the simulation results, some transport phenomena are interpreted in terms of the co-action or counteraction of the turbulent mass flux diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Surface area per unit volume of packed bed, m−1

a eff :

Effective area for mass transfer between the gas phase and liquid phase, 1/m

a w :

Wetted surface area, m−1

\( \overline{{c^{2} }} \) :

Concentration variance, kg2 m−6

\( \overline{C} \) :

Average concentration of mass fraction, kg m−3

C μ , c 1, c 2 :

Model parameters in k − ε model equations, dimensionless

C c0, C c1, C c2, C c3 :

Model parameters in \( \overline{{c^{2} }} - \varepsilon_{c} \) model equations, dimensionless

\( C_{\text{p}} \) :

Liquid-phase specific heat, J/kg/K

C t0, C t1, C t2, C t3 :

Model parameters in \( \overline{{t^{2} }} - \varepsilon_{t} \) model equations, dimensionless

D :

Molecular diffusivity, ms−1

D eff :

Effective diffusivity, ms−1

D G :

Molecular diffusivity of CO2 in gas phase, m2 s−1

D t :

Turbulent diffusivity for mass transfer, m2 s−1

d e :

Equivalent diameter of random packing, m

d H :

Hydraulic diameter of random packing, m

d p :

Nominal diameter of the packed particle, m

E :

Enhancement factor, dimensionless

G :

Gas-phase flow rate per unit cross-sectional area, kg m2 s−1

H A :

Physical absorption heat of mol CO2 absorbed, J kmol−1

H R :

Chemical reaction heat of mol CO2 absorbed, J kmol−1

H s :

Static holdup, dimensionless

H t :

Total liquid holdup, dimensionless

k :

Turbulent kinetic energy, m2/s2

k 2 :

Second-order reaction rate constant, m3 kmol s−1

k G :

Gas-phase mass transfer coefficient, kmol m s kPa−1

k L :

Liquid-phase mass transfer coefficient without chemical reaction, m s−1

k R,L :

Liquid-phase mass transfer coefficient with chemical reaction, m s−1

L :

Liquid flow rate per unit cross-sectional area, kg m2 s−1

R :

Position in radial direction, m

Rc:

The rate of reaction, kmol m3 s−1

r :

Radius of the column, m

\( \overline{{t^{2} }} \) :

Temperature variance, dimensionless

T :

Liquid temperature, K

U :

Liquid superficial velocity, m s−1

X :

Molar concentration in the liquid bulk, kmol m−3

X i :

Molar concentration at interface, kmol m−3

x :

Distance measured from column top (x = 0 at the column top), m

α, α eff, α t :

Molecular, turbulent, and effective thermal diffusivities, respectively, m2 s−1

β :

Volume fraction of liquid phase based on pore space, dimensionless

ε :

Turbulent dissipation rate, m2 s−3

ε c :

Turbulent dissipation rate of concentration fluctuation, kg2 m−6 s−1

ε t :

Turbulent dissipation rate of temperature fluctuation, s−1

Φ:

Variable, dimensionless

ν t :

Turbulent diffusivity, m2 s−1

ρ :

Liquid density, kg/m3

ρ G :

Gas-phase density, kg/m3

σ :

Surface tension of aqueous solutions, dynes/cm, or N/m

σ c , \( \sigma_{{\varepsilon_{c} }} \) :

Model parameters in \( \overline{{c^{2} }} - \varepsilon_{c} \) model equations, dimensionless

σ t , \( \sigma_{{\varepsilon_{t} }} \) :

Model parameters in \( \overline{{t^{2} }} - \varepsilon_{t} \) model equations, dimensionless

σ k , σ ε :

Model parameters in k − ε model equations, dimensionless

References

  1. Yin FH, Sun CG, Afacan A, Nandakumar K, Chuang KT (2000) CFD modeling of mass-transfer processes in randomly packed distillation columns. Ind Eng Chem Res 39(5):1369–1380

    Article  CAS  Google Scholar 

  2. Liu SJ (2001) A continuum model for gas-liquid flow in packed towers. Chem Eng Sci 56:5945–5953

    Article  CAS  Google Scholar 

  3. Hjertager LK, Hjertager BH, Solberg T (2002) CFD modelling of fast chemical reactions in turbulent liquid flows. Com and Chem Eng 26(4–5):507–515

    Article  CAS  Google Scholar 

  4. Jiang Y, Khadilkar MR, Al-Dahhan MH, Dudukovic AP (2002) CFD of multiphase flow in packed-bed reactors: I. k-fluid modeling issues. AIChE J 48(4):701–715

    Article  CAS  Google Scholar 

  5. Jiang Y, Khadilkar MR, Al-Dahhan MH, Dudukovic MP (2002) CFD of multiphase flow in packed-bed reactors: II. Results and applications. AIChE J 48(4):716–730

    Article  CAS  Google Scholar 

  6. Yin FH, Afacan A, Nandakumar K, Chuang KT (2002) Liquid holdup distribution in packed columns: gamma ray tomography and CFD simulation. Chem Eng Process 41(5):473–483

    Article  CAS  Google Scholar 

  7. de Lemos MJS, Mesquita MS (2003) Turbulent mass transport in saturated rigid porous media. Int J Heat Mass Transfer 30(1):105–113

    Google Scholar 

  8. Liu GB, Yu KT, Yuan XG, Liu CJ (2006) Simulations of chemical absorption in pilot-scale and industrial-scale packed columns by computational mass transfer. Chem Eng Sci 61(19):6511–6529

    Article  CAS  Google Scholar 

  9. Liu GB, Yu KT, Yuan XG, Liu CJ (2006) New model for turbulent mass transfer and its application to the simulations of a pilot-scale randomly packed column for CO2-NaOH chemical absorption. Ind Eng Chem Res 45(9):3220–3229

    Article  CAS  Google Scholar 

  10. Li WB (2012) Theory and applications of computational mass transfer, PhD dissertation, Tianjin University, Tianjin, China

    Google Scholar 

  11. Chen CJ, Jaw SY (1998) Fundamentals of turbulence modeling. Taylor and Francis, Washington, DC

    Google Scholar 

  12. Sater VE, Levenspiel O (1966) Two-phase flow in packed beds. Ind Eng Chem Fundam 5:86–92

    Article  CAS  Google Scholar 

  13. Engel V, Stichmair J, Geipel W (1997) A new model to predict liquid holdup in packed columns—using data based on capacitance measurement techniques. Institute Chemical Engineering Symposium Series, Part 2, p. 939–947

    Google Scholar 

  14. Giese M, Rottschafer K, Vortmeyer D (1998) Measured and modeled superficial flow profiles in packed beds with liquid flow. AIChE J 44:484–490

    Article  CAS  Google Scholar 

  15. Roblee LHS, Baird RM, Tierney JW (1958) Radial porosity variations in packed beds. AIChE J 4:460–464

    Article  CAS  Google Scholar 

  16. de Klerk A (2003) Voidage variation in packed beds at small column to particle diameter ratio. AIChE J 49:022–2029

    Google Scholar 

  17. Wellek RM, Brunson RJ, Law FH (1978) Enhancement factors for gas absorption with 2nd-order irreversible chemical-reaction. Can J Chem Eng 56:181–186

    Article  CAS  Google Scholar 

  18. Ferchichi M, Tavoularis S (2002) Scalar probability density function and fine structure in uniformly sheared turbulence. J Fluid Mech 461:155–182

    Article  Google Scholar 

  19. Hikita H, Asai S, Katsu Y, Ikuno S (1979) Absorption of carbon-dioxide into aqueous monoethanolamine solutions. AIChE J 25:793–800

    Article  CAS  Google Scholar 

  20. Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Japan 1:56–62

    Article  CAS  Google Scholar 

  21. Danckwerts PV (1979) Reaction of CO2 with ethanolamines. Chem Eng Sci 34(4):443–446

    Article  CAS  Google Scholar 

  22. Kohl AL, Nielsen RB (1997) Gas purification. Gulf Publishing Company, Houston

    Google Scholar 

  23. Pintola T, Tontiwachwuthikul P, Meisen A (1993) Simulation of pilot plant and industrial CO2-MEA absorbers. Gas Sep Purif 7:47–52

    Article  CAS  Google Scholar 

  24. Tontiwachwuthikul P, Meisen A, Lim CJ (1992) CO2 absorption by NaOH, monoethanolamine and 2-Amino-2-Methyl-1-Propanol Solutions in a packed-column. Chem Eng Sci 47(2):381–390

    Article  CAS  Google Scholar 

  25. Saha AK, Bandyopadhyay SS, Biswas AK (1995) Kinetics of absorption of CO2 into aqueous-solutions of 2-Amino-2-Methyl-1-Propanol. Chem Eng Sci 50(22):3587–3598

    Article  CAS  Google Scholar 

  26. Liu GB (2006) Computational transport and its application to mass transfer and reaction processes in packed beds. PhD dissertation, Tianjin University, Tianjin, China

    Google Scholar 

  27. Pohorecki R, Moniuk W (1988) Kinetics of reaction between carbon-dioxide and hydroxyl ions in aqueous-electrolyte solutions. Chem Eng Sci 43(7):1677–1684

    Article  CAS  Google Scholar 

  28. Jones WP, Launder BE (1973) The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Transfer 16:1119–1130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Tsong Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, KT., Yuan, X. (2014). Application of Computational Mass Transfer (II): Chemical Absorption Process. In: Introduction to Computational Mass Transfer. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53911-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53911-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53910-7

  • Online ISBN: 978-3-642-53911-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics