Basic Models of Computational Mass Transfer

  • Kuo-Tsong Yu
  • Xigang Yuan
Part of the Heat and Mass Transfer book series (HMT)


The computational mass transfer (CMT) aims to find the concentration profile in process equipment, which is the most important basis for evaluating the process efficiency as well as the effectiveness of an existing mass transfer equipment. This chapter is dedicated to the description of the fundamentals and the recently published models of CMT for obtaining simultaneously the concentration, velocity and temperature distributions. The challenge is the closure of the differential species conservation equation for the mass transfer in a turbulent flow. Two models are presented. The first is a two-equation model termed as \( \overline{{c^{{{\prime }2}} }} - \varepsilon_{{{\text{c}}^{{\prime }} }} \) model, which is based on the Boussinesq postulate by introducing an isotropic turbulent mass transfer diffusivity. The other is the Reynolds mass flux model, in which the variable covariant term in the equation is modeled and computed directly, and so it is anisotropic and rigorous. Both methods are validated by comparing with experimental data.


Computational mass transfer Reynolds averaging Closure of time-averaged mass transfer equation Two-equation model Turbulent mass transfer diffusivity Reynolds mass flux model 



Matrix of inverted Maxwell–Stefan Diffusivities, m−2 s


Instantaneous mass concentration of species i, kg m−3; Molar concentration of species i in Sect. 3.4.2, mol s−3

\( c_{\text{t}} \)

Total molar concentration of component i per m3, mol m−3


Time-average concentration, bulk concentration, kg m−3 in Table 3.1 mass fraction


Dimensionless concentration


Fluctuating concentration, kg m−3

\( \overline{{c^{{{\prime }2}} }} \)

Variance of fluctuating concentration, kg2 m−6


Molecular diffusivity, m2 s−1


Effective mass diffusivity, m2 s−1


Isotropic turbulent mass diffusivity, m2 s−1


Maxwell-Stefan diffusivity, m2 s−1

\( {\mathbf{D}}_{\text{t}} \)

Anisotropic turbulent mass diffusivity, m2 s−1


Gravity acceleration, m s−2


Identity matrix, dimensionless


Mass flux at wall surface, kg m−2 s−1


Fluctuating kinetic energy, m2 s−2; mass transfer coefficient, m s−1


Matrix of mass transfer coefficients, m s−1


Characteristic length, m


Molar mass flux of diffusing species i, mol−2 s−1


Molar mass flux of multicomponent solution, mol−2 s−1


Fluctuating pressure, kg m−1 s−2


Time-average pressure, kg m−1 s−2


Peclet number


Matrix of inverted mass transfer coefficients, m−1 s


Ratio of fluctuating velocity dissipation time and fluctuating concentration dissipation time


Source term


Schmidt number


Turbulent Schmidt number


Time, s


Fluctuating temperature, K

\( \overline{{T^{{{\prime }2}} }} \)

Variance of fluctuating temperature, K2


Time-average temperature, K


Instantaneous velocity of species i, m s−1


Fluctuating velocity, m s−1


Frictional velocity, m s−1


Dimensionless velocity, m s−1

U, V, W

Time-average velocity in three directions, m s−1


Matrix of correction factor


Dimensionless distance, m


Turbulent thermal diffusivity, m−1 s−1


Matrix of molar exchange of mass transfer in counter-diffusion due to the difference of latent hear of vaporization between component i and j, dimensionless


Kronecker sign; thickness of fluid film, m


Dissipation rate of turbulent kinetic energy, m2 s−3


Dissipation rate of concentration variance, kg2 m−6 s−1


Dissipation rate of temperature variance, K2 s−1


Viscosity, kg m−1 s−1


Turbulent viscosity, kg m−1 s−1


Effective turbulent diffusivity, m2 s−1


Density, kg m−3


Matrix of non-ideality factor (in terms of activity coefficient γ), dimensionless

τμ, τc, τm

Characteristic time scale, s


Near-wall stress, kg m−1 s−2


  1. 1.
    Liu BT (2003) Study of a new mass transfer model of CFD and its application on distillation tray. Ph.D. dissertation, Tianjin University, Tianjin, China (in Chinese)Google Scholar
  2. 2.
    Sun ZM (2005) Study on computational mass transfer in chemical engineering. Ph.D. dissertation, Tianjin University, Tianjin, China (in Chinese)Google Scholar
  3. 3.
    Sun ZM, Liu BT, Yuan XG, Yu KT (2005) New turbulent model for computational mass transfer and its application to a commercial-scale distillation column. Ind Eng Chem Res 44(12):4427–4434CrossRefGoogle Scholar
  4. 4.
    Sun ZM, Yu KT, Yuan XG, Liu CJ (2007) A modified model of computational mass transfer for distillation column. Chem Eng Sci 62:1839–1850CrossRefGoogle Scholar
  5. 5.
    Liu GB (2006) Computational transport and its application to mass transfer and reaction processes in pack-beds. Ph.D. dissertation, Tianjin University, Tianjin, China (in Chinese)Google Scholar
  6. 6.
    Liu GB, Yu KT, Yuan XG, Liu CJ, Guo QC (2006) Simulations of chemical absorption in pilot-scale and industrial-scale packed columns by computational mass transfer. Chem Eng Sci 61:6511–6529CrossRefGoogle Scholar
  7. 7.
    Liu GB, Yu KT, Yuan XG, Liu CJ (2006) New model for turbulent mass transfer and its application to the simulations of a pilot-scale randomly packed column for CO2–NaOH chemical absorption. Ind Eng Chem Res 45:3220–3229CrossRefGoogle Scholar
  8. 8.
    Liu GB, Yu KT, Yuan XG, Liu CJ (2008) A computational transport model for wall-cooled catalytic reactor. Ind Eng Chem Res 47:2656–2665CrossRefGoogle Scholar
  9. 9.
    Liu GB, Yu KT, Yuan XG, Liu CJ (2009) A numerical method for predicting the performance of a randomly packed distillation column. Int J Heat Mass Tran 52:5330–5338CrossRefGoogle Scholar
  10. 10.
    Li WB, Liu BT, Yu KT, Yuan XG (2011) A rigorous model for the simulation of gas adsorption and its verification. Ind Eng Chem Res 50(13):361–370 (8)Google Scholar
  11. 11.
    Sun ZM, Liu CJ, Yu GC, Yuan XG (2011) Prediction of distillation column performance by computational mass transfer method. Chin J Chem Eng 19(5):833–844CrossRefGoogle Scholar
  12. 12.
    Lemoine F, Antoine Y, Wolff M et al (2000) Some experimental investigations on the concentration variance and its dissipation rate in a grid generated turbulent flow. Int J Heat Mass Tran 43(7):1187–1199CrossRefGoogle Scholar
  13. 13.
    Spadling DB (1971) Concentration fluctuations in a round turbulent free jet. Chem Eng Sci 26:95CrossRefGoogle Scholar
  14. 14.
    Launder BE, Samaraweera SA (1979) Application of a second-moment turbulence closure to heat and mass transport in thin shear flows—two-dimensional transport. Int J Heat Mass Tran 22:1631–1643CrossRefGoogle Scholar
  15. 15.
    Sommer TP, So MRC (1995) On the modeling of homogeneous turbulence in a stably stratified flow. Phys Fluids 7:2766–2777CrossRefGoogle Scholar
  16. 16.
    Sherwood TK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw Hill, New YorkGoogle Scholar
  17. 17.
    Cai TJ, Chen GX (2004) Liquid back-mixing on distillation trays. Ind Eng Chem Res 43(10):2590–2597CrossRefGoogle Scholar
  18. 18.
    Comini G, Del Giudice S (1985) A k–e model of turbulent flow. Numer Heat Transf 8:299–316CrossRefGoogle Scholar
  19. 19.
    Patankar SV, Sparrow EM, Ivanovic M (1978) Thermal interactions among the confining walls of a turbulent recirculating flow. Int J Heat Mass Tran 21(3):269–274CrossRefGoogle Scholar
  20. 20.
    Tavoularis S, Corrsin S (1981) Experiments in nearly homogenous turbulent shear-flow with a uniform mean temperature-gradient. J Fluid Mech 104:311–347 (MAR)CrossRefGoogle Scholar
  21. 21.
    Ferchichi M, Tavoularis S (2002) Scalar probability density function and fine structure in uniformly sheared turbulence. J Fluid Mech 461:155–182CrossRefGoogle Scholar
  22. 22.
    Sun ZM, Liu CT, Yuan XG, Yu KT (2006) Measurement and numerical simulation of concentration distribution on sieve tray. J Chem Ind Eng (China) 57(8):1878–1883Google Scholar
  23. 23.
    Chen CJ, Jaw SY (1998) Fundamentals of turbulence modeling. Taylor and Francis, LondonGoogle Scholar
  24. 24.
    Jone CJ, Launder BE (1973) The calculation of low-reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Tran 16:1119–1130CrossRefGoogle Scholar
  25. 25.
    Khalil EE, Spalading DB, Whitelaw JH (1975) Calculation of local flow properties in 2-dimensional furnaces. Int J Heat Mass Transfer 18:775–791CrossRefGoogle Scholar
  26. 26.
    Li WB, Liu BT, Yu KT, Yuan XG (2011) A new model for the simulation of distillation column. Chin J Chem Eng 19(5):717–725CrossRefGoogle Scholar
  27. 27.
    Li WB (2012) Theory and application of computational mass transfer for chemical engineering processes. Ph.D. dissertation, Tianjin University, TianjinGoogle Scholar
  28. 28.
    Gesit G, Nandakumar K, Chuang KT (2003) CFD modeling of flow patterns and hydraulics of commercial-scale sieve trays. AIChE J 49:910CrossRefGoogle Scholar
  29. 29.
    Krishna R, van Baten JM, Ellenberger J (1999) CFD simulations of sieve tray hydrodynamics. Trans IChemE 77 Part A 10:639–646CrossRefGoogle Scholar
  30. 30.
    Solari RB, Bell RL (1986) Fluid flow patterns and velocity distribution on commercial-scale sieve trays. AIChE J 32:640CrossRefGoogle Scholar
  31. 31.
    Wang XL, Liu CT, Yuan XG, Yu KT (2004) Computational fluid dynamics simulation of three-dimensional liquid flow and mass transfer on distillation column trays. Ind Eng Chem Res 43(10):2556–2567CrossRefGoogle Scholar
  32. 32.
    Auton TR, Hunt JCR, Prud’homme M (1988) The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluid Mech 197:241CrossRefGoogle Scholar
  33. 33.
    Krishna R, Urseanu MI, Van Baten JM et al (1999) Rise velocity of a swarm of large gas bubbles in liquids. Chem Eng Sci 54:171–183CrossRefGoogle Scholar
  34. 34.
    Yu KT, Yuan XG, You XY, Liu CJ (1999) Computational fluid-dynamics and experimental verification of two-phase two-dimensional flow on a sieve column tray. Chem Eng Res Des 77A:554CrossRefGoogle Scholar
  35. 35.
    Colwell CJ (1979) Clear liquid height and froth density on sieve trays. Ind Eng Chem Proc Des Dev 20:298CrossRefGoogle Scholar
  36. 36.
    Bennet DL, Agrawal R, Cook PJ (1983) New pressure drop correlation for sieve tray distillation columns. AIChE J 29:434–442CrossRefGoogle Scholar
  37. 37.
    Higbie R (1935) The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans Am Inst Chem Eng 35:360–365Google Scholar
  38. 38.
    Doan HD, Fayed ME (2000) Entrance effect and gas-film mass-transfer coefficient in at large diameter packed column. Ind Eng Chem Res 39:1039–1047CrossRefGoogle Scholar
  39. 39.
    Gostick J, Doan HD, Lohi A, Pritzkev MD (2003) Investigation of local mass transfer in a packed bed of pall rings using a limiting current technique. Ind Eng Res 42:3626–3634CrossRefGoogle Scholar
  40. 40.
    Yih SM, Chen KY (1982) Gas absorption into wavy and turbulent falling liquid films in a wetted-wall. Chem Eng Commun 17(1–6):123–136CrossRefGoogle Scholar
  41. 41.
    Gostick J, Doan HD, Lohi A, Pritzkev MD (2003) Investigation of local mass transfer in a packed bed of pall rings using a limiting current technique. Ind Eng Chem Res 42:3626–3634CrossRefGoogle Scholar
  42. 42.
    Chen YM, Sun CY (1997) Experimental study on the heat and mass transfer of a combined absorber evaporator exchanger. Int J Heat Mass Tran 40:961–971CrossRefGoogle Scholar
  43. 43.
    Krupiczka R, Rotkegel A (1997) An experimental study of diffusional cross-effect in multicomponent mass transfer. Chem Eng Sci 52(6):1007–1017CrossRefGoogle Scholar
  44. 44.
    Vasquez G, Antorrena G, Navaza JM, Santos V, Rodriguez T (1993) Adsorption of CO2 in aqueous solutions of various viscosities in the presence of induced turbulence. Int Chem Eng 33(4):649–655Google Scholar
  45. 45.
    Sterinberger N, Hondzo M (1999) Diffusional mass transfer at sediment water interface. J Environ Eng 125(2):192–200CrossRefGoogle Scholar
  46. 46.
    Carberry JJ (1960) A boundary-layer model of fluid-particle mass transfer in mixed beds. AIChE J 4:460CrossRefGoogle Scholar
  47. 47.
    Nielsen CHE, Kiil S, Thomsen HW, Dam-Johansen K (1998) Mass transfer in wetted-wall columns: correlations at high Reynolds numbers. Chem Eng Sci 53(3):495–503CrossRefGoogle Scholar
  48. 48.
    Yang MC, Cussler EL (1986) Designing hollow-fiber contactors. AIChE J 32(11):1910–1916CrossRefGoogle Scholar
  49. 49.
    Hichey PJ, Gooding CH (1994) Mass transfer in spiral wound pervaporation modules. J Membr Sci 92(1):59–74CrossRefGoogle Scholar
  50. 50.
    Sekino M (1995) Study of an analytical model for hollow fiber reverse osmosis module systems. Desalination 100(1):85–97CrossRefGoogle Scholar
  51. 51.
    Erasmus AB, Nieuwoudt I (2001) Mass transfer in structured packing: a wetted-wall study. Ind Eng Chem Res 40:2310–2321CrossRefGoogle Scholar
  52. 52.
    Cussler EL (1989) Diffusion. Cambridge University Press, New YorkGoogle Scholar
  53. 53.
    Baerns M, Hofmann H, Renken A (1987) Chemische Reaktionstechnik Stuttgart. ThiemeGoogle Scholar
  54. 54.
    Jordan U, Schumpe A (2001) The gas density effect on mass transfer in bubble columns with organic liquids. Chem Eng Sci 56(21):6267–6272CrossRefGoogle Scholar
  55. 55.
    Yang W, Wang J, Jin Y (2001) Mass transfer characteristics of syngas components in slurry system at industrial conditions. Chem Eng Technol 24(6):651–657CrossRefGoogle Scholar
  56. 56.
    Hameed MS, Saleh Muhammed M (2003) Mass transfer into liquid falling film in straight and helically coiled tubes. Int J Heat Mass Transf 46(10):1715–1724CrossRefGoogle Scholar
  57. 57.
    Shulman HL, Ullrich CF, Proulx AZ et al (1955) Performance of packed columns. Wetted and effective interfacial areas, gas- and liquid-phase mass transfer rates. AIChE J 1(2):253–258CrossRefGoogle Scholar
  58. 58.
    Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn 1(1):56–62CrossRefGoogle Scholar
  59. 59.
    Billet R, Schultes M (1992) Advantage in correlating packing column performance. Inst Chem Eng Symp Ser 128(2):B129–B136Google Scholar
  60. 60.
    Bravo JL, Rocha JA, Fair JR (1985) Mass transfer in gauze packings. Hydrocarb Process 64(1):91–95Google Scholar
  61. 61.
    Olujic Z, Kamerbeek AB, De Graauw J (1999) A corrugation geometry based model for efficiency of structured distillation packing. Chem Eng Process 38(4–6):683–695CrossRefGoogle Scholar
  62. 62.
    Zuiderweg FJ (1892) Sieve trays: a view on state of art. Chem Eng Sci 37:1441–1464CrossRefGoogle Scholar
  63. 63.
    Akita K, Yoshida F (1973) Gas holdup and volumetric mass transfer coefficient in bubble column. Ind Eng Chem Process Des Dev 12(1):76–80CrossRefGoogle Scholar
  64. 64.
    Zhou CF (2005) Study on the influence of Marangoni effect and other factor on the mass transfer coefficients. M.S. dissertation, Tianjin University, Tianjin, China (in Chinese)Google Scholar
  65. 65.
    Wang GQ, Yuan XG, Yu KT (2005) Review of mass-transfer correlations for packed columns. Ind Eng Chem Res 44:8715–8729CrossRefGoogle Scholar
  66. 66.
    Krishna R, Wesselingh JA (1997) The Maxwell-Stefan approach to mass transfer. Chem Eng Sci 52(6):861–911CrossRefGoogle Scholar
  67. 67.
    Krishna R (1985) Model for prediction of point efficiencies for multicomponent distillation. Chem Eng Res Des 63(5):312–322Google Scholar
  68. 68.
    Song HW, Wang SY, Han JC, Wu JW (1996) A new model for predicting distillation point efficiencies of non-ideal multicomponent mixture. CIESC J 47(5):571Google Scholar
  69. 69.
    Wang ZC (1997) Non-ideal multicomponent mass transfer and point efficiencies on a sieve tray. PhD dissertation, Tianjin University, Tianjin, China (in Chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations