Auditive Informationsverarbeitung

Chapter

Zusammenfassung

Dieses Kapitel beschäftigt sich mit Wahrnehmung und Informationsverarbeitung in der auditiven Sinnesmodalität. Ausgehend von den physikalischen und physiologischen Grundlagen der Aufnahme und Weiterleitung akustischer Informationen beim Menschen werden psychische Funktionen betrachtet, die für das Hören von zentraler Bedeutung sind: Gedächtnis und Prädiktion, Aufmerksamkeit, Objektbildung sowie der Umgang mit Mehrdeutigkeit. Abschließend werden verschiedene Hörstörungen sowie Anwendungsbeispiele der wahrnehmungspsychologischen Grundlagen erörtert.

Schlüsselwörter: Aufmerksamkeit; Prädiktion; Gedächtnis; Ambiguität; Multistabilität; Auditive Szenenanalyse; Überlagerung; Binaurales Hören; Hörbahn; Audiometrie; Tinnitus; Versteckter Hörverlust

Literatur

  1. Ahveninen, J., Hämäläinen, M., Jääskeläinen, I. P., Ahlfors, S. P., Huang, S., Lin, F. H., Raij, T., Sams, M., Vasios, C. E., & Belliveau, J. W. (2011). Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise. Proceedings of the National Academy of Sciences of the United States of America, 108, 4182–4187.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alain, C., & McDonald, K. L. (2007). Age-related differences in neuromagnetic brain activity underlying concurrent sound perception. Journal of Neuroscience, 27, 1308–1314.PubMedCrossRefGoogle Scholar
  3. Alain, C., & Winkler, I. (2012). Recording event-related potentials: Application to study auditory perception. In D. Poeppel, T. Overath, A. N. Popper, & R. R. Fay (Hrsg.), The Human Auditory Cortex Handbook of Auditory Research. (S. 69–96). New York: Springer.CrossRefGoogle Scholar
  4. Alain, C., Arnott, S. R., & Picton, T. W. (2001). Bottom-up and top-down influences on auditory scene analysis: Evidence from brain potentials. Journal of Experimental Psychology, 27, 1072–1089.PubMedGoogle Scholar
  5. Alho, K., Sainio, K., Sajaniemi, N., Reinikainen, K., & Näätänen, R. (1990). Event-related brain potential of human newborns to pitch change of an acoustic stimulus. Electroencephalography and Clinical Neurophysiology, 77, 151–155.PubMedCrossRefGoogle Scholar
  6. Arnal, L. H., Morillon, B., Kell, C. A., & Giraud, A.-L. (2009). Dual neural routing of visual facilitation in speech processing. Journal of Neuroscience, 29, 13445–13453.PubMedCrossRefGoogle Scholar
  7. Baess, P., Widmann, A., Roye, A., Schröger, E., & Jacobsen, T. (2009). Attenuated human auditory middle latency response and evoked 40-Hz response to self-initiated sounds. European Journal of Neuroscience, 29, 1514–1521.PubMedCrossRefGoogle Scholar
  8. Baldeweg, T. (2006). Repetition effects to sounds: Evidence for predictive coding in the auditory system. Trends in Cognitive Sciences, 10, 93–94.PubMedCrossRefGoogle Scholar
  9. Bendixen, A. (2014). Predictability effects in auditory scene analysis: A review. Frontiers in Neuroscience, 8, 60.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Best, V., Ozmeral, E. J., Kopčo, N., & Shinn-Cunningham, B. G. (2008). Object continuity enhances selective auditory attention. Proceedings of the National Academy of Sciences of the United States of America, 105, 13174–13178.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bharadwaj, H. M., Verhulst, S., Shaheen, L., Liberman, M. C., & Shinn-Cunningham, B. G. (2014). Cochlear neuropathy and the coding of supra-threshold sound. Frontiers in Systems Neuroscience, 8, 26.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bidet-Caulet, A., Mikyska, C., & Knight, R. T. (2010). Load effects in auditory selective attention: evidence for distinct facilitation and inhibition mechanisms. Neuroimage, 50, 277–284.PubMedCrossRefGoogle Scholar
  13. Bizley, J. K., & Cohen, Y. E. (2013). The what, where and how of auditory-object perception. Nature Reviews Neuroscience, 14, 693–707.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bőhm, T. M., Shestopalova, L., Bendixen, A., Andreou, A. G., Georgiou, J., Garreau, G., Pouliquen, P., Cassidy, A., Denham, S. L., & Winkler, I. (2013). The role of perceived source location in auditory stream segregation: Separation affects sound organization, common fate does not. Learning and Perception, 5, 55–72.CrossRefGoogle Scholar
  15. Brandenburg, K., Faller, C., Herre, J., Johnston, J. D., & Kleijn, W. B. (2013). Perceptual coding of high-quality digital audio. Proceedings of the IEEE, 101, 1905–1919.CrossRefGoogle Scholar
  16. Bregman, A. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.Google Scholar
  17. Bronkhorst, A. W. (2015). The cocktail-party problem revisited: early processing and selection of multi-talker speech. Attention, Perception, & Psychophysics, 77, 1465–1487.Google Scholar
  18. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with 2 ears. Journal of the Acoustical Society of America, 25, 975–979.CrossRefGoogle Scholar
  19. Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96, 341–370.PubMedCrossRefGoogle Scholar
  20. Cousineau, M., Oxenham, A. J., & Peretz, I. (2015). Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis. Neuropsychologia, 66, 293–301.PubMedCrossRefGoogle Scholar
  21. Dannenbring, G. L. (1976). Perceived auditory continuity with alternately rising and falling frequency transitions. Canadian Journal of Psychology, 30, 99–114.PubMedCrossRefGoogle Scholar
  22. Dawes, P., Emsley, R., Cruickshanks, K. J., Moore, D. R., Fortnum, H., Edmondson-Jones, M., McCormack, A., & Munro, K. J. (2015). Hearing loss and cognition: the role of hearing aids, social isolation and depression. PLoS One, 10, e0119616.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Denham, S. L., & Winkler, I. (2006). The role of predictive models in the formation of auditory streams. Journal of Physiology, Paris, 100, 154–170.PubMedCrossRefGoogle Scholar
  24. Denham, S. L., Gyimesi, K., Stefanics, G., & Winkler, I. (2013). Perceptual bi-stability in auditory streaming: how much do stimulus features matter? Learning and Perception, 5, 73–100.CrossRefGoogle Scholar
  25. Denham, S. L., Bőhm, T. M., Bendixen, A., Szalárdy, O., Kocsis, Z., Mill, R., & Winkler, I. (2014). Stable individual characteristics in the perception of multiple embedded patterns in multistable auditory stimuli. Frontiers in Neuroscience, 8, 25.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Deroche, M. L., Culling, J. F., Chatterjee, M., & Limb, C. J. (2014). Speech recognition against harmonic and inharmonic complexes: spectral dips and periodicity. Journal of the Acoustical Society of America, 135, 2873–2884.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ding, N., & Simon, J. Z. (2012). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences of the United States of America, 109, 11854–11859.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Du, Y., He, Y., Ross, B., Bardouille, T., Wu, X., Li, L., & Alain, C. (2011). Human auditory cortex activity shows additive effects of spectral and spatial cues during speech segregation. Cerebral Cortex, 21, 698–707.PubMedCrossRefGoogle Scholar
  29. Elmer, S., Rogenmoser, L., Kühnis, J., & Jäncke, L. (2015). Bridging the gap between perceptual and cognitive perspectives on absolute pitch. Journal of Neuroscience, 35, 366–371.PubMedCrossRefGoogle Scholar
  30. Escera, C., & Malmierca, M. S. (2014). The auditory novelty system: an attempt to integrate human and animal research. Psychophysiology, 51, 111–123.PubMedCrossRefGoogle Scholar
  31. Escera, C., Leung, S., & Grimm, S. (2014). Deviance detection based on regularity encoding along the auditory hierarchy: electrophysiological evidence in humans. Brain Topography, 27, 527–538.PubMedCrossRefGoogle Scholar
  32. Fenn, K. M., Shintel, H., Atkins, A. S., Skipper, J. I., Bond, V. C., & Nusbaum, H. C. (2011). When less is heard than meets the ear: change deafness in a telephone conversation. Quarterly Journal of Experimental Psychology, 64, 1442–1456.CrossRefGoogle Scholar
  33. Friederici, A. D. (2011). The brain basis of language processing: from structure to function. Physiological Reviews, 91, 1357–1392.PubMedCrossRefGoogle Scholar
  34. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 815–836.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138.PubMedCrossRefGoogle Scholar
  36. Füllgrabe, C., Moore, B. C., & Stone, M. A. (2015). Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition. Frontiers in Aging Neuroscience, 6, 347.PubMedPubMedCentralGoogle Scholar
  37. Galbraith, G. C., Arbagey, R. B., Comerci, N., & Rector, P. M. (1995). Intelligible speech encoded in the human brain stem frequency-following response. Neuroreport, 6, 2363–2367.PubMedCrossRefGoogle Scholar
  38. Garde, M. M., & Cowey, A. (2000). „Deaf hearing“: unacknowledged detection of auditory stimuli in a patient with cerebral deafness. Cortex, 36, 71–80.PubMedCrossRefGoogle Scholar
  39. Getzmann, S., Lewald, J., & Falkenstein, M. (2014). Using auditory pre-information to solve the cocktail-party problem: electrophysiological evidence for age-specific differences. Frontiers in Neuroscience, 8, 413.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gibson, J. J. (1979). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  41. Gokhale, S., Lahoti, S., & Caplan, L. R. (2013). The neglected neglect: auditory neglect. JAMA Neurology, 70, 1065–1069.PubMedCrossRefGoogle Scholar
  42. Gourévitch, B., Edeline, J. M., Occelli, F., & Eggermont, J. J. (2014). Is the din really harmless? Long-term effects of non-traumatic noise on the adult auditory system. Nature Reviews Neuroscience, 15, 483–491.PubMedCrossRefGoogle Scholar
  43. Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 290, 181–197.PubMedCrossRefGoogle Scholar
  44. Háden, G. P., Németh, R., Török, M. & Winkler, I. (2015). Predictive processing of pitch trends in newborn infants. Brain Research, 1626, 14–20.Google Scholar
  45. He, C., & Trainor, L. J. (2009). Finding the pitch of the missing fundamental in infants. Journal of Neuroscience, 29, 7718–8822.PubMedCrossRefGoogle Scholar
  46. Hedrick, M. S., & Madix, S. G. (2009). Effect of vowel identity and onset asynchrony on concurrent vowel identification. Journal of Speech, Language, and Hearing Research, 52, 696–705.PubMedCrossRefGoogle Scholar
  47. Henry, M., & Herrmann, B. (2014). Low-frequency neural oscillations support dynamic attending in temporal context. Timing & Time Perception, 2, 62–68.CrossRefGoogle Scholar
  48. Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences of the United States of America, 109, 20095–20100.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hill, K. T., Bishop, C. W., Yadav, D., & Miller, L. M. (2011). Pattern of BOLD signal in auditory cortex relates acoustic response to perceptual streaming. BMC Neuroscience, 12, 85.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hohmann, V. (2008). Signal processing in hearing aids. Handbook of Signal Processing in Acoustics, Bd. II, S. 205–212). New York: Springer.Google Scholar
  51. Horváth, J., & Burgyán, A. (2011). Distraction and the auditory attentional blink. Attention, Perception, & Psychophysics, 73, 695–701.CrossRefGoogle Scholar
  52. Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.PubMedCrossRefGoogle Scholar
  53. Kaernbach, C. (2003). Auditory sensory memory and short-term memory. In C. Kaernbach, E. Schröger, & H. Müller (Hrsg.), Psychophysics beyond Sensation: Laws and Invariants of Human Cognition. Mahwah, NJ: Erlbaum.Google Scholar
  54. Kam, J. W., Dao, E., Stanciulescu, M., Tildesley, H., & Handy, T. C. (2013). Mind wandering and the adaptive control of attentional resources. Journal of Cognitive Neuroscience, 25, 952–960.PubMedCrossRefGoogle Scholar
  55. Kavšek, M. J. (1996). Multidimensionale Skalierung von Farbmustern aus der DIN-Farbenkarte. Zeitschrift für Experimentelle Psychologie, 43, 547–570.PubMedGoogle Scholar
  56. Koch, I., Lawo, V., Fels, J., & Vorländer, M. (2011). Switching in the cocktail party: exploring intentional control of auditory selective attention. Journal of Experimental Psychology: Human Perception and Performance, 37, 1140–1147.PubMedGoogle Scholar
  57. Koelsch, S. (2012). Brain and Music. Chichester: Wiley-Blackwell.Google Scholar
  58. Kollmeier, B., & Koch, R. (1994). Speech enhancement based on physiological and psychoacoustical models of modulation perception and binaural interaction. Journal of the Acoustical Society of America, 95, 1593–1602.PubMedCrossRefGoogle Scholar
  59. Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11, 599–605.PubMedCrossRefGoogle Scholar
  60. Kraus, N., & Nicol, T. (2014). The cognitive auditory system: The role of learning in shaping the biology of the auditory system. In A. N. Popper, & R. R. Fay (Hrsg.), Perspectives on Auditory Research Handbook of Auditory Research. (S. 299–319). New York: Springer.CrossRefGoogle Scholar
  61. Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: cochlear nerve degeneration after „temporary“ noise-induced hearing loss. Journal of Neuroscience, 29, 14077–14085.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lakatos, P., Musacchia, G., O’Connel, M. N., Falchier, A. Y., Javitt, D. C., & Schroeder, C. E. (2013). The spectrotemporal filter mechanism of auditory selective attention. Neuron, 77, 750–761.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lange, K. (2009). Brain correlates of early auditory processing are attenuated by expectations for time and pitch. Brain and Cognition, 69, 127–137.PubMedCrossRefGoogle Scholar
  64. Lehmann, A., & Schönwiesner, M. (2014). Selective attention modulates human auditory brainstem responses. PLoS One, 9, e85442.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lipp, O. V., Neumann, D. L., Pretorius, N. R., & McHugh, M. J. (2003). Attentional blink modulation during sustained and after discrete lead stimuli presented in three sensory modalities. Psychophysiology, 40, 285–290.PubMedCrossRefGoogle Scholar
  66. Massaro, D. W. (1975). Experimental psychology and information processing. Chicago: Rand McNally.Google Scholar
  67. Merabet, L. B., & Pascual-Leone, A. (2010). Neural reorganization following sensory loss: the opportunity of change. Nature Reviews Neuroscience, 11, 44–52.PubMedCrossRefGoogle Scholar
  68. Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485, 233–236.PubMedCrossRefGoogle Scholar
  69. Moon, I. J., Won, J. H., Park, M. H., Ives, D. T., Nie, K., Heinz, M. G., Lorenzi, C., & Rubinstein, J. T. (2014). Optimal combination of neural temporal envelope and fine structure cues to explain speech identification in background noise. Journal of Neuroscience, 34, 12145–12154.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Moore, B. C. (2008). The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. Journal of the Association for Research in Otolaryngology, 9, 399–406.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instruction. Quarterly Journal of Experimental Psychology, 9, 56–60.CrossRefGoogle Scholar
  72. Morlet, D., & Fischer, C. (2014). MMN and novelty P3 in coma and other altered states of consciousness: a review. Brain Topography, 27, 467–479.PubMedCrossRefGoogle Scholar
  73. Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13, 201–288.CrossRefGoogle Scholar
  74. Näätänen, R. (1992). Attention and brain function. Hillsdale, NJ: Erlbaum.Google Scholar
  75. Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.PubMedCrossRefGoogle Scholar
  76. Okamoto, H., Stracke, H., Stoll, W., & Pantev, C. (2010). Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proceedings of the National Academy of Sciences of the United States of America, 107, 1207–1210.PubMedCrossRefGoogle Scholar
  77. O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-Cunningham, B. G., Slaney, M., Shamma, S. A. & Lalor, E. C. (2015). Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cerebral Cortex, 25, 1697–1706.Google Scholar
  78. Pantev, C., Rudack, C., Stein, A., Wunderlich, R., Engell, A., Lau, P., Wollbrink, A., & Shaykevich, A. (2014). Study protocol: Münster tinnitus randomized controlled clinical trial-2013 based on tailor-made notched music training (TMNMT). BMC Neurology, 14, 40.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Partanen, E., Kujala, T., Näätänen, R., Liitola, A., Sambeth, A., & Huotilainen, M. (2013). Learning-induced neural plasticity of speech processing before birth. Proceedings of the National Academy of Sciences of the United States of America, 110, 15145–15150.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Plakke, B., & Romanski, L. M. (2014). Auditory connections and functions of prefrontal cortex. Frontiers in Neuroscience, 8, 199.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pronk, M., Deeg, D. J., Smits, C., Tilburg, T. G. van, Kuik, D. J., Festen, J. M., & Kramer, S. E. (2011). Prospective effects of hearing status on loneliness and depression in older persons: identification of subgroups. International Journal of Audiology, 50, 887–896.PubMedCrossRefGoogle Scholar
  82. Puschmann, S., Sandmann, P., Ahrens, J., Thorne, J., Weerda, R., Klump, G., Debener, S., & Thiel, C. M. (2013). Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes. Neuroimage, 75, 155–164.PubMedCrossRefGoogle Scholar
  83. Rahne, T., Rasinski, C., & Neumann, K. (2010). Measuring timbre discrimination with cross-faded synthetic tones. Journal of Neuroscience Methods, 189, 176–179.PubMedCrossRefGoogle Scholar
  84. Ross, B. (2013). Steady-state auditory evoked responses. In G. G. Celesia (Hrsg.), Disorders of peripheral and central auditory processing Handbook of Clinical Neurophysiology, (Bd. 10, S. 155–176). Amsterdam: Elsevier.CrossRefGoogle Scholar
  85. Roswandowitz, C., Mathias, S. R., Hintz, F., Kreitewolf, J., Schelinski, S., & Kriegstein, K. von (2014). Two cases of selective developmental voice-recognition impairments. Current Biology, 24, 2348–2353.PubMedCrossRefGoogle Scholar
  86. Roye, A., Jacobsen, T., & Schröger, E. (2013). Discrimination of personally significant from nonsignificant sounds: A training study. Cognitive, Affective, & Behavioral Neuroscience, 13, 930–943.CrossRefGoogle Scholar
  87. Ruggles, D., Bharadwaj, H., & Shinn-Cunningham, B. G. (2011). Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proceedings of the National Academy of Sciences of the United States of America, 108, 15516–15521.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sandmann, P., Dillier, N., Eichele, T., Meyer, M., Kegel, A., Pascual-Marqui, R. D., Marcar, V. L., Jäncke, L., & Debener, S. (2012). Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users. Brain, 135, 555–568.PubMedCrossRefGoogle Scholar
  89. Saupe, K., Schröger, E., Andersen, S. K., & Müller, M. M. (2009). Neural mechanisms of intermodal sustained selective attention with concurrently presented auditory and visual stimuli. Frontiers in Human Neuroscience, 3, 58.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Schaette, R. (2014). Tinnitus in men, mice (as well as other rodents), and machines. Hearing Research, 311, 63–71.PubMedCrossRefGoogle Scholar
  91. Schaette, R., Turtle, C., & Munro, K. J. (2012). Reversible induction of phantom auditory sensations through simulated unilateral hearing loss. PLoS One, 7, e35238.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Schnupp, J., Nelken, I., & King, A. (2011). Auditory neuroscience: Making sense of sound. Cambridge, MA: MIT Press.Google Scholar
  93. Schröger, E. (1998). Measurement and interpretation of the Mismatch Negativity (MMN). Behavior Research Methods, Instruments, & Computers, 30, 131–145.CrossRefGoogle Scholar
  94. Schröger, E. (2007). Mismatch negativity: a microphone into auditory memory. Journal of Psychophysiology, 21, 138–146.CrossRefGoogle Scholar
  95. Schröger, E., SanMiguel, I., & Bendixen, A. (2013). Prädiktive Modellierung in der auditiven Wahrnehmung. In E. Schröger, & S. Koelsch (Hrsg.), Affektive und Kognitive Neurowissenschaft. Enzyklopädie der Psychologie (Serie II: Kognition, (Bd. 5, S. 11–45). Göttingen: Hogrefe.Google Scholar
  96. Schröger, E., Bendixen, A., Denham, S. L., Mill, R. W., Böhm, T. M., & Winkler, I. (2014). Predictive regularity representations in violation detection and auditory stream segregation: From conceptual to computational models. Brain Topography, 27, 565–577.PubMedCrossRefGoogle Scholar
  97. Schröger, E., Marzecová, A., & SanMiguel, I. (2015). Attention and prediction in human audition: a lesson from cognitive psychophysiology. European Journal of Neuroscience, 41, 641–664.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Schwartz, J.-L., Grimault, N., Hupé, J.-M., Moore, B. C. J., & Pressnitzer, D. (2012). Multistability in perception: Binding sensory modalities, an overview. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 896–905.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sergeyenko, Y., Lall, K., Liberman, M. C., & Kujawa, S. G. (2013). Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. Journal of Neuroscience, 33, 13686–13694.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34, 114–123.PubMedCrossRefGoogle Scholar
  101. Sheridan, C. J., Matuz, T., Draganova, R., Eswaran, H., & Preissl, H. (2010). Fetal magnetoencephalography – achievements and challenges in the study of prenatal and early postnatal brain responses: A review. Infant and Child Development, 19, 80–93.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Shinn-Cunningham, B., & Best, V. (2008). Selective attention in normal and impaired hearing. Trends in Amplification, 12, 283–299.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Skoe, E., & Kraus, N. (2010). Auditory brainstem response to complex sounds: A tutorial. Ear & Hearing, 31, 302–324.CrossRefGoogle Scholar
  104. Sussman, E. S. (2007). A new view on the MMN and attention debate: the role of context in processing auditory events. Journal of Psychophysiology, 21, 164–175.CrossRefGoogle Scholar
  105. Szalárdy, O., Winkler, I., Schröger, E., Widmann, A., & Bendixen, A. (2013). Foreground-background discrimination indicated by event-related brain potentials in a new auditory multistability paradigm. Psychophysiology, 50, 1239–1250.PubMedCrossRefGoogle Scholar
  106. Thorne, J., & Debener, S. (2014). Look now and hear what’s coming: On the functional role of cross-modal phase reset. Hearing Research, 307, 144–152.PubMedCrossRefGoogle Scholar
  107. Treisman, A. M. (1960). Contextual cues in selective listening. Quarterly Journal of Experimental Psychology, 12, 242–248.CrossRefGoogle Scholar
  108. Warren, R. M. (1968). Verbal transformation effect and auditory perceptual mechanisms. Psychological Bulletin, 70, 261–270.PubMedCrossRefGoogle Scholar
  109. Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science, 167, 392–393.PubMedCrossRefGoogle Scholar
  110. Warzybok, A., Rennies, J., Brand, T., & Kollmeier, B. (2014). Prediction of binaural speech intelligibility in normal-hearing and hearing-impaired listeners: a psychoacoustically motivated extension. In Fortschritte der Akustik (S. 351–352). Berlin/Oldenburg: DEGA.Google Scholar
  111. Wetzel, N., & Schröger, E. (2014). On the development of auditory distraction: A review. PsyCh Journal, 3, 72–91.PubMedCrossRefGoogle Scholar
  112. Winkler, & Czigler, I. (1998). Mismatch negativity: deviance detection or the maintenance of the ’standard’. NeuroReport, 9, 3809–3813.PubMedCrossRefGoogle Scholar
  113. Winkler, I, & Schröger, E. (2015). Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain & Language, 148, 1–22.Google Scholar
  114. Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.PubMedCrossRefGoogle Scholar
  115. Winkler, I., Denham, S. L., Mill, R., Bőhm, T. M., & Bendixen, A. (2012). Multistability in auditory stream segregation: A predictive coding view. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 367, 1001–1012.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zion Golumbic, E. M., Poeppel, D., & Schroeder, C. E. (2012). Temporal context in speech processing and attentional stream selection: A behavioral and neural perspective. Brain & Language, 122, 151–161.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Fakultät für Naturwissenschaften, Institut für PhysikTechnische Universität ChemnitzChemnitzDeutschland
  2. 2.Institut für PsychologieUniversität LeipzigLeipzigDeutschland

Personalised recommendations