Advertisement

Obtaining a 3D Model from a Facial Recognition in 2D

  • G. Peláez
  • F. García
  • A. de la Escalera
  • J. M. Armingol
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8112)

Abstract

This paper shows the current status of an implementation with a composed device of depth and color camera. From the color image, a set of points associated with the face is obtained; later the main features of a human face are identified. The 3D model is constructed based on a previous 2D analysis using the haar-like features for detecting the human face. This application will be a part of a more complex system designed to assist the driver by monitoring both inside and outside the vehicle, i.e. intelligent systems of transportation.

Keywords

Facial recognition 3D perception driving assistance intelligent vehicles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heo, J., Savvides, M.: Rapid 3D face modeling using a frontal face and a profile face for accurate 2D pose synthesis. In: International Conference on Automatic Face & Gesture Recognition and Workshops, pp. 632–638 (March 2011)Google Scholar
  2. 2.
    He, J., Zhang, X.: Facial feature extraction and recognition based on Curvelet transform and SVD. In: International Conference of Apperceiving Computing and Intelligence Analysis, ICACIA 2009, pp. 104–107 (2009)Google Scholar
  3. 3.
    Flores, M.J., Armingol, J.M.: A Escalera: Real-time drowsiness detection system for an intelligent vehicle. In: IEEE Intelligent Vehicles Symposium, pp. 637–642 (June 2008)Google Scholar
  4. 4.
    Industries, Adafruit. Adafruit Industries (March 2012), http://www.adafruit.com
  5. 5.
    Industries, Prime Sense (March 2012) Prime Sense Industries, http://www.primesense.com
  6. 6.
    Hack a day community. Hack a Day (March 2012), http://www.hackaday.com
  7. 7.
    Frati, V., Prattichizzo, D.: Using Kinect for hand tracking and rendering in wearable haptics. In: World Haptics Conference (WHC), pp. 317–321 (June 2011)Google Scholar
  8. 8.
    Santos, E.S., Lamounier, E.A., Cardoso, A.: Interaction in Augmented Reality Environments Using Kinect. In: 2011 XIII Symposium on Virtual Reality (SVR), pp. 112–121 (May 2011)Google Scholar
  9. 9.
    Xia, L., Chen, C.-C., Aggarwal, J.K.: Human detection using depth information by Kinect. In: Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 15–22 (June 2011)Google Scholar
  10. 10.
    Ganganath, N., Leung, H.: Mobile robot localization using odometry and kinect sensor. In: International Conference on Emerging Signal Processing Applications (ESPA), pp. 91–97 (January 2012)Google Scholar
  11. 11.
    Soutschek, S., Penne, J., Hornegger, J., Kornhuber, J.: 3-D gesture-based scene navigation in medical imaging applications using Time-of-Flight cameras. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 16–23 (June 2008)Google Scholar
  12. 12.
    Keller, M., Orthmann, J., Kolb, A., Peters, V.: A Simulation Framework for Time-Of-Flight Sensors. In: International Symposium on Signals, Circuits and Systems, vol. 1, pp. 1–4 (2007)Google Scholar
  13. 13.
    Garcia, F., de la Escalera, A., Armingol, J.M., Herrero, J.G., Llinas, J.: Fusion based safety application for pedestrian detection with danger estimation. In: Proceedings of the 14th International Conference on Information Fusion, pp. 1–8 (July 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Peláez
    • 1
  • F. García
    • 1
  • A. de la Escalera
    • 1
  • J. M. Armingol
    • 1
  1. 1.Systems Engineering and Automation Department, Intelligent Systems LaboatoryUniversity Carlos III of MadridLeganesSpain

Personalised recommendations