Skip to main content

Optic Flow: Improving Discontinuity Preserving

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8112)

Abstract

The aim of this paper is to analyze the discontinuity preserving behavior of two methods in optical flow. With this objetive, we have implemented a well-known optical flow method that uses isotropic TV-L 1 regularization. For the second approach, we have modified this method, by adding a decreasing function in the regularization term, to avoid smoothing at flow discontinuities. As a consequence, we see a high improvement and a very accurate discontinuities detection in some sequences but not good enough in others. Adapting the weight of the decreasing function allows us to better define the flow discontinuities. Nevertheless, the experimental results show that the parameters that yield a good segmentation of the motion field, may also introduce important unstabilities. In this sense, the results seem promising, but it is very difficult to set a unified parameter configuration that works fine for all the sequences. We evaluate the performance of these approaches with some standard test sequences, such as the Middlebury benchmark database or the Yosemite sequence. Looking for the best parameters configuration, which provides the best contour definition, does not typically mean a solution which is closer to the ground truth.

Keywords

  • Optical Flow
  • Discontinuity Preserving
  • TV-L 1
  • Variational Methods
  • Isotropic Regularization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-53862-9_16
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-53862-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Álvarez, L., Esclarín, J., Lefébure, M., Sánchez, J.: A pde model for computing the optical flow. In: XVI Congreso de Ecuaciones Diferenciales y Aplicaciones, C.E.D.Y.A. XVI, Las Palmas de Gran Canaria, Spain, pp. 1349–1356 (1999)

    Google Scholar 

  2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92(1), 1–31 (2011)

    CrossRef  Google Scholar 

  3. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  4. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    CrossRef  Google Scholar 

  5. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transanctions on Pattern Analysis and Machine Intelligence 8, 565–593 (1986)

    CrossRef  Google Scholar 

  6. Perona, P., Malick, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analasys and Machine Intelligence 12, 629–629 (1990)

    CrossRef  Google Scholar 

  7. Sánchez, J., Monzón, N., Salgado, A.: Robust Optical Flow Estimation. Image Processing On Line 2013, 242–260 (2013)

    Google Scholar 

  8. Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure- and motion-adaptive regularization for high accuracy optic flow. In: IEEE International Conference on Computer Vision, pp. 1663–1668 (September 2009)

    Google Scholar 

  9. Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1293–1300 (June 2010)

    Google Scholar 

  10. Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L 1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monzón López, N., Sánchez, J., Salgado de la Nuez, A. (2013). Optic Flow: Improving Discontinuity Preserving. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2013. EUROCAST 2013. Lecture Notes in Computer Science, vol 8112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53862-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53862-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53861-2

  • Online ISBN: 978-3-642-53862-9

  • eBook Packages: Computer ScienceComputer Science (R0)