Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications, Numerical Insights, vol. 6. CRC Press, Chapman & Hall (2009)
Google Scholar
Alonso, C.L., Montaña, J.L., Borges, C.E.: Evolution strategies for constants optimization in genetic programming. In: ICTAI, pp. 703–707. IEEE Computer Society (2009),
http://dblp.uni-trier.de/db/conf/ictai/ictai2009.html#AlonsoMB09
Bochkanov, S., Bystritsky, V.: Alglib,
http://www.alglib.net/
Friedman, J.H.: Multivariate adaptive regression splines. The Annals of Statistics, 1–67 (1991)
Google Scholar
Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)
CrossRef
Google Scholar
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
MATH
Google Scholar
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathmatics II(2), 164–168 (1944)
MathSciNet
Google Scholar
Mukherjee, S., Eppstein, M.J.: Differential evolution of constants in genetic programming improves efficacy and bloat. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference Companion, GECCO Companion 2012, pp. 625–626. ACM, New York (2012),
http://doi.acm.org/10.1145/2330784.2330891
CrossRef
Google Scholar
Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003),
http://dl.acm.org/citation.cfm?id=1762668.1762688
CrossRef
Google Scholar
Rall, L.B.: Automatic Differentiation: Techniques and Applications. LNCS, vol. 120. Springer, Heidelberg (1981)
CrossRef
MATH
Google Scholar
Shtof, A.: Autodiff,
http://autodiff.codeplex.com/
Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient search of numeric leaf values. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), July 7-11, pp. 155–162. Morgan Kaufmann, San Francisco (2001),
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d01.pdf
Google Scholar
Wagner, S.: Heuristic Optimization Software Systems - Modeling of Heuristic Optimization Algorithms in the HeuristicLab Software Environment. Ph.D. thesis, Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria (2009)
Google Scholar
White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaskowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genetic Programming and Evolvable Machines 14(1), 3–29 (2013)
CrossRef
Google Scholar
Zhang, Q., Zhou, C., Xiao, W., Nelson, P.C.: Improving gene expression programming performance by using differential evolution. In: Proceedings of the Sixth International Conference on Machine Learning and Applications, ICMLA 2007, pp. 31–37. IEEE Computer Society, Washington, DC (2007),
http://dx.doi.org/10.1109/ICMLA.2007.55
Google Scholar