Introduction
Metaheuristic optimization algorithms are general optimization strategies suited to solve a range of real-world relevant optimization problems. Many metaheuristics expose parameters that allow to tune the effort that these algorithms are allowed to make and also the strategy and search behavior [1]. Adjusting these parameters allows to increase the algorithms’ performances with respect to different problem- and problem instance characteristics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. Numerical Insights. CRC Press (2009)
Bischl, B., Mersmann, O., Trautmann, H., Preuss, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 313–320 (2012)
Chicano, F., Luque, G., Alba, E.: Autocorrelation measures for the quadratic assignment problem. Applied Mathematics Letters 25, 698–705 (2012)
Glover, F.: Tabu search – part I. ORSA Journal on Computing 1(3), 190–206 (1989)
Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica, Journal of the Econometric Society 25(1), 53–76 (1957)
Pitzer, E., Affenzeller, M.: A Comprehensive Survey on Fitness Landscape Analysis. In: Fodor, J., Klempous, R., Araujo, C.P.S. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2011)
Pitzer, E., Beham, A., Affenzeller, M.: Generic hardness estimation using fitness and parameter landscapes applied to robust taboo search and the quadratic assignment problem. In: Companion Publication of the 2012 Genetic and Evolutionary Computation Conference, pp. 393–400 (2012)
Taillard, E.D.: Robust taboo search for the quadratic assignment problem. Parallel Computing 17, 443–455 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beham, A., Pitzer, E., Affenzeller, M. (2013). Fitness Landscape Based Parameter Estimation for Robust Taboo Search. In: Moreno-DĂaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2013. EUROCAST 2013. Lecture Notes in Computer Science, vol 8111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53856-8_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-53856-8_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-53855-1
Online ISBN: 978-3-642-53856-8
eBook Packages: Computer ScienceComputer Science (R0)