Skip to main content

Fitness Landscape Based Parameter Estimation for Robust Taboo Search

  • Conference paper
Computer Aided Systems Theory - EUROCAST 2013 (EUROCAST 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8111))

Included in the following conference series:

Introduction

Metaheuristic optimization algorithms are general optimization strategies suited to solve a range of real-world relevant optimization problems. Many metaheuristics expose parameters that allow to tune the effort that these algorithms are allowed to make and also the strategy and search behavior [1]. Adjusting these parameters allows to increase the algorithms’ performances with respect to different problem- and problem instance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. Numerical Insights. CRC Press (2009)

    Google Scholar 

  2. Bischl, B., Mersmann, O., Trautmann, H., Preuss, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 313–320 (2012)

    Google Scholar 

  3. Chicano, F., Luque, G., Alba, E.: Autocorrelation measures for the quadratic assignment problem. Applied Mathematics Letters 25, 698–705 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Glover, F.: Tabu search – part I. ORSA Journal on Computing 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  5. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica, Journal of the Econometric Society 25(1), 53–76 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pitzer, E., Affenzeller, M.: A Comprehensive Survey on Fitness Landscape Analysis. In: Fodor, J., Klempous, R., Araujo, C.P.S. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Pitzer, E., Beham, A., Affenzeller, M.: Generic hardness estimation using fitness and parameter landscapes applied to robust taboo search and the quadratic assignment problem. In: Companion Publication of the 2012 Genetic and Evolutionary Computation Conference, pp. 393–400 (2012)

    Google Scholar 

  8. Taillard, E.D.: Robust taboo search for the quadratic assignment problem. Parallel Computing 17, 443–455 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beham, A., Pitzer, E., Affenzeller, M. (2013). Fitness Landscape Based Parameter Estimation for Robust Taboo Search. In: Moreno-DĂ­az, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2013. EUROCAST 2013. Lecture Notes in Computer Science, vol 8111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53856-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53856-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53855-1

  • Online ISBN: 978-3-642-53856-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics