Advertisement

The Life and Times of Lac Permease: Crystals Ain’t Everything, but They Certainly Do Help

  • M. Gregor Madej
  • H. Ronald Kaback
Chapter
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 17)

Abstract

This chapter focuses on the lactose permease of Escherichia coli (LacY), a galactoside/H+ symporter, as this membrane transport protein is the grandparent for the major facilitator superfamily (MFS) and arguably the most intensively studied secondary transporter known at present.

LacY couples the free energy released from downhill translocation of H+ in response to an H+ electrochemical gradient to drive the stoichiometric accumulation of galactopyranosides against a concentration gradient under physiological conditions. X-ray structures of an inward-facing conformation and most recently, an almost occluded conformation with a narrow periplasmic opening have been solved, which confirm many conclusions from biochemical and biophysical studies. Although structure models are critical, they are not sufficient to explain the catalysis of transport. The clues to understanding transport mechanisms are based on the principles of enzyme kinetics. Secondary transport is a dynamic process that can be described only partially by the static snapshots provided by X-ray crystallography. However, without structural information it is virtually impossible to deduce the chemistry underlying ion-coupled transport. By combining a large body of biochemical/biophysical data derived from systematic studies of site-directed mutants in LacY, residues involved in substrate binding and H+ translocation have been identified. On the basis of the functional properties of the mutants and the X-ray structures, a working model for the symport mechanism that involves alternating access of the binding site is presented. The use of molecular biology to engineer LacY for dynamic studies combined with computational modeling has led to the postulate that the transport reaction is driven by thermodynamics, but is controlled kinetically.

Keywords

Membrane transport Symporters Permeases Protons Galactopyranosides Bioenergetics 

Notes

Acknowledgments

This work was supported by National Institutes of Health Grants DK51131, DK069463, and GM073210, as well as National Science Foundation Grant MCB-1129551 (to H.R.K.).

References

  1. Abramson J et al (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301(5633):610–615PubMedGoogle Scholar
  2. Bibi E, Kaback HR (1990) In vivo expression of the lacY gene in two segments leads to functional lac permease. Proc Natl Acad Sci USA 87(11):4325–4329PubMedPubMedCentralGoogle Scholar
  3. Bibi E, Kaback HR (1992) Functional complementation of internal deletion mutants in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 89(5):1524–1528PubMedPubMedCentralGoogle Scholar
  4. Bieseler B, Prinz H, Beyreuther K (1985) Topological studies of lactose permease of Escherichia coli by protein sequence analysis. Ann N Y Acad Sci 456:309–325PubMedGoogle Scholar
  5. Buchel DE, Gronenborn B, Muller-Hill B (1980) Sequence of the lactose permease gene. Nature 283(5747):541–545PubMedGoogle Scholar
  6. Calamia J, Manoil C (1990) Lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. Proc Natl Acad Sci USA 87(13):4937–4941PubMedPubMedCentralGoogle Scholar
  7. Carrasco N, Tahara SM, Patel L, Goldkorn T, Kaback HR (1982) Preparation, characterization, and properties of monoclonal antibodies against the lac carrier protein from Escherichia coli. Proc Natl Acad Sci USA 79(22):6894–6898PubMedPubMedCentralGoogle Scholar
  8. Carrasco N, Viitanen P, Herzlinger D, Kaback HR (1984) Monoclonal antibodies against the lac carrier protein from Escherichia coli. 1. Functional studies. Biochemistry 23(16):3681–3687PubMedGoogle Scholar
  9. Carrasco N et al (1989) Characterization of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements. Biochemistry 28(6):2533–2539PubMedGoogle Scholar
  10. Chaptal V et al (2011) Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition. Proc Natl Acad Sci USA 108:9361–9366PubMedPubMedCentralGoogle Scholar
  11. Chen Y, Barkley MD (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37(28):9976–9982PubMedGoogle Scholar
  12. Cohen GN, Rickenberg HV (1955) Etude directe de la fixation d'un inducteur de la b-galactosidase par les cellules d'Escherichia coli. Compt Rendu 240:466–468Google Scholar
  13. Costello MJ et al (1987) Purified lac permease and cytochrome o oxidase are functional as monomers. J Biol Chem 262(35):17072–17082PubMedGoogle Scholar
  14. Dang S et al (2010) Structure of a fucose transporter in an outward-open conformation. Nature 467(7316):734–738PubMedGoogle Scholar
  15. Dornmair K, Corni AF, Wright JK, Jähnig F (1985) The size of the lactose permease derived from rotational diffusion measurements. EMBO J 4(13A):3633–3638PubMedPubMedCentralGoogle Scholar
  16. Ermolova N, Guan L, Kaback HR (2003) Intermolecular thiol cross-linking via loops in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 100(18):10187–10192PubMedPubMedCentralGoogle Scholar
  17. Ermolova NV, Smirnova IN, Kasho VN, Kaback HR (2005) Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli. Biochemistry 44(21):7669–7677PubMedGoogle Scholar
  18. Foster DL, Garcia ML, Newman MJ, Patel L, Kaback HR (1982) Lactose-proton symport by purified lac carrier protein. Biochemistry 21(22):5634–5638PubMedGoogle Scholar
  19. Foster DL, Boublik M, Kaback HR (1983) Structure of the lac carrier protein of Escherichia coli. J Biol Chem 258(1):31–34PubMedGoogle Scholar
  20. Fox CF, Kennedy EP (1965) Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli. Proc Natl Acad Sci USA 54:891–899PubMedPubMedCentralGoogle Scholar
  21. Franco PJ, Brooker RJ (1994) Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli. J Biol Chem 269(10):7379–7386PubMedGoogle Scholar
  22. Frillingos S, Gonzalez A, Kaback HR (1997) Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential off. Biochemistry 36(47):14284–14290PubMedGoogle Scholar
  23. Frillingos S, Sahin-Toth M, Wu J, Kaback HR (1998) Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J 12(13):1281–1299PubMedGoogle Scholar
  24. Gaiko O, Bazzone A, Fendler K, Kaback HR (2013) Electrophysiological characterization of uncoupled mutants of LacY. Biochemistry 52(46):8261–8266PubMedGoogle Scholar
  25. Garcia-Celma JJ, Smirnova IN, Kaback HR, Fendler K (2009) Electrophysiological characterization of LacY. Proc Natl Acad Sci USA 106(18):7373–7378PubMedPubMedCentralGoogle Scholar
  26. Garcia-Celma JJ, Ploch J, Smirnova I, Kaback HR, Fendler K (2010) Delineating electrogenic reactions during lactose/H + symport. Biochemistry 49(29):6115–6121PubMedPubMedCentralGoogle Scholar
  27. Guan L, Kaback HR (2004) Binding affinity of lactose permease is not altered by the H + electrochemical gradient. Proc Natl Acad Sci USA 101(33):12148–12152PubMedPubMedCentralGoogle Scholar
  28. Guan L, Kaback HR (2006) Lessons from lactose permease. Annu Rev Biophys Biomol Struct 35:67–91PubMedPubMedCentralGoogle Scholar
  29. Guan L, Kaback HR (2007) Site-directed alkylation of cysteine to test solvent accessibility of membrane proteins. Nat Protoc 2(8):2012–2017PubMedPubMedCentralGoogle Scholar
  30. Guan L, Murphy FD, Kaback HR (2002a) Surface-exposed positions in the transmembrane helices of the lactose permease of Escherichia coli determined by intermolecular thiol cross-linking. Proc Natl Acad Sci USA 99(6):3475–3480PubMedPubMedCentralGoogle Scholar
  31. Guan L, Sahin-Toth M, Kaback HR (2002b) Changing the lactose permease of Escherichia coli into a galactose-specific symporter. Proc Natl Acad Sci USA 99(10):6613–6618PubMedPubMedCentralGoogle Scholar
  32. Guan L, Hu Y, Kaback HR (2003) Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry 42(6):1377–1382PubMedGoogle Scholar
  33. Guan L, Smirnova IN, Verner G, Nagamori S, Kaback HR (2006) Manipulating phospholipids for crystallization of a membrane transport protein. Proc Natl Acad Sci USA 103(6):1723–1726PubMedPubMedCentralGoogle Scholar
  34. Guan L, Mirza O, Verner G, Iwata S, Kaback HR (2007) Structural determination of wild-type lactose permease. Proc Natl Acad Sci USA 104(39):15294–15298PubMedPubMedCentralGoogle Scholar
  35. He M, Kaback HR (1997) Interaction between residues Glu269 (Helix VIII) and His322 (Helix X) of the lactose permease of Escherichia coli is essential for substrate binding. Biochemistry 36:13688–13692PubMedGoogle Scholar
  36. He MM, Voss J, Hubbell WL, Kaback HR (1995a) Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 2. Proximity of helix IX (Arg302) with helix X (His322 and Glu325). Biochemistry 34(48):15667–15670PubMedGoogle Scholar
  37. He MM, Voss J, Hubbell WL, Kaback HR (1995b) Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 1. Proximity of helix VII (Asp237 and Asp240) with helices X (Lys319) and XI (Lys358). Biochemistry 34(48):15661–15666PubMedGoogle Scholar
  38. Herzlinger D, Viitanen P, Carrasco N, Kaback HR (1984) Monoclonal antibodies against the lac carrier protein from Escherichia coli. 2. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein. Biochemistry 23(16):3688–3693PubMedGoogle Scholar
  39. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301(5633):616–620PubMedGoogle Scholar
  40. Hvorup RN, Saier MH Jr (2002) Sequence similarity between the channel-forming domains of voltage-gated ion channel proteins and the C-terminal domains of secondary carriers of the major facilitator superfamily. Microbiology 148(Pt 12):3760–3762PubMedGoogle Scholar
  41. Jenks WP (1969) Catalysis in chemistry and enzymology. McGraw-Hill, New York, NYGoogle Scholar
  42. Jeschke G (2002) Distance measurements in the nanometer range by pulse EPR. Chemphyschem 3(11):927–932PubMedGoogle Scholar
  43. Jiang X, Nie Y, Kaback HR (2011) Site-directed alkylation studies with LacY provide evidence for the alternating access model of transport. Biochemistry 50(10):1634–1640PubMedPubMedCentralGoogle Scholar
  44. Jiang X et al (2012) Evidence for an intermediate conformational state of LacY. Proc Natl Acad Sci USA 109(12):E698–E704PubMedPubMedCentralGoogle Scholar
  45. Jung K, Jung H, Wu J, Privé GG, Kaback HR (1993) Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. Biochemistry 32:12273–12278PubMedGoogle Scholar
  46. Jung K, Jung H, Kaback HR (1994a) Dynamics of lactose permease of Escherichia coli determined by site-directed fluorescence labeling. Biochemistry 33(13):3980–3985PubMedGoogle Scholar
  47. Jung H, Jung K, Kaback HR (1994b) Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. I. Site-directed mutagenesis studies. Biochemistry 33:12160–12165PubMedGoogle Scholar
  48. Jung K, Voss J, He M, Hubbell WL, Kaback HR (1995) Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli. Biochemistry 34(19):6272–6277PubMedGoogle Scholar
  49. Kaback HR (1971) Bacterial membranes. In: Kaplan NP, Jakoby WB, Colowick NP (eds) Methods in enzymol, vol XXII. Elsevier, New York, pp 99–120Google Scholar
  50. Kaback HR (1987) Permease on parade: application of site-directed mutagenesis to ion-gradient driven active transport. Bioessays 7(6):261–265PubMedGoogle Scholar
  51. Kaback HR, Barnes EM Jr (1971) Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and β-galactoside transport in membrane preparations from Escherichia coli. J Biol Chem 246(17):5523–5531PubMedGoogle Scholar
  52. Kaback HR, Sahin-Toth M, Weinglass AB (2001) The kamikaze approach to membrane transport. Nat Rev Mol Cell Biol 2(8):610–620PubMedGoogle Scholar
  53. Kaback HR et al (2007) Site-directed alkylation and the alternating access model for LacY. Proc Natl Acad Sci USA 104(2):491–494PubMedPubMedCentralGoogle Scholar
  54. Kaback HR, Smirnova I, Kasho V, Nie Y, Zhou Y (2011) The alternating access transport mechanism in LacY. J Membr Biol 239(1–2):85–93PubMedPubMedCentralGoogle Scholar
  55. Kaczorowski GJ, Kaback HR (1979) Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Biochemistry 18(17):3691–3697PubMedGoogle Scholar
  56. Kaczorowski GJ, Robertson DE, Kaback HR (1979) Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delta psi, delta pH, and delta mu H+. Biochemistry 18(17):3697–3704PubMedGoogle Scholar
  57. Kaczorowski GJ, Leblanc G, Kaback HR (1980) Specific labeling of the lac carrier protein in membrane vesicles of Escherichia coli by a photoaffinity reagent. Proc Natl Acad Sci USA 77(11):6319–6323PubMedPubMedCentralGoogle Scholar
  58. Kasho VN, Smirnova IN, Kaback HR (2006) Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease. J Mol Biol 358(4):1060–1070PubMedPubMedCentralGoogle Scholar
  59. Kumar H et al (2014) Structure of sugar-bound LacY. Proc Natl Acad Sci USA 111(5):1784–1788Google Scholar
  60. Kwaw I, Zen KC, Hu Y, Kaback HR (2001) Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helices IV and V that contain the major determinants for substrate binding. Biochemistry 40(35):10491–10499PubMedGoogle Scholar
  61. le Coutre J, Narasimhan LR, Patel CK, Kaback HR (1997) The lipid bilayer determines helical tilt angle and function in lactose permease of Escherichia coli. Proc Natl Acad Sci USA 94(19):10167–10171PubMedPubMedCentralGoogle Scholar
  62. le Coutre J, Kaback HR, Patel CK, Heginbotham L, Miller C (1998) Fourier transform infrared spectroscopy reveals a rigid alpha-helical assembly for the tetrameric Streptomyces lividans K + channel. Proc Natl Acad Sci USA 95(11):6114–6117PubMedPubMedCentralGoogle Scholar
  63. Lemieux MJ et al (2003) Three-dimensional crystallization of the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Protein Sci 12(12):2748–2756PubMedPubMedCentralGoogle Scholar
  64. Liu Z, Madej MG, Kaback HR (2010) Helix dynamics in LacY: helices II and IV. J Mol Biol 396(3):617–626PubMedPubMedCentralGoogle Scholar
  65. Loewenthal R, Sancho J, Fersht AR (1992) Histidine-aromatic interactions in barnase. Elevation of histidine pKa and contribution to protein stability. J Mol Biol 224(3):759–770PubMedGoogle Scholar
  66. Madej MG, Soro SN, Kaback HR (2012) Apo-intermediate in the transport cycle of lactose permease (LacY). Proc Natl Acad Sci USA 109(44):E2970–E2978PubMedPubMedCentralGoogle Scholar
  67. Madej MG, Dang S, Yan N, Kaback HR (2013) Evolutionary mix-and-match with MFS transporters. Proc Natl Acad Sci USA 110(15):5870–5874PubMedPubMedCentralGoogle Scholar
  68. Majumdar DS et al (2007) Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. Proc Natl Acad Sci USA 104(31):12640–12645PubMedPubMedCentralGoogle Scholar
  69. Matsushita K, Patel L, Gennis RB, Kaback HR (1983) Reconstitution of active transport in proteoliposomes containing cytochrome o oxidase and lac carrier protein purified from Escherichia coli. Proc Natl Acad Sci USA 80(16):4889–4893PubMedPubMedCentralGoogle Scholar
  70. McKenna E, Hardy D, Kaback HR (1992) Evidence that the final turn of the last transmembrane helix in the lactose permease is required for folding. J Biol Chem 267(10):6471–6474PubMedGoogle Scholar
  71. Mirza O, Guan L, Verner G, Iwata S, Kaback HR (2006) Structural evidence for induced fit and a mechanism for sugar/H(+) symport in LacY. EMBO J 25:1177–1183PubMedPubMedCentralGoogle Scholar
  72. Mitchell P (1963) Molecule, group and electron transport through natural membranes. Biochem Soc Symp 22:142–168Google Scholar
  73. Mitchell P (1967) Translocations through natural membranes. Adv Enzymol Relat Areas Mol Biol 29:33–87PubMedGoogle Scholar
  74. Mitchell P (1968) Chemiosmotic coupling and energy transduction. Glynn Research Ltd, Bodmin, EnglandGoogle Scholar
  75. Müller-Hill B (1996) The lac Operon: a short history of a genetic paradigm. Walter de Gruyter, Berlin, New YorkGoogle Scholar
  76. Newman MJ, Wilson TH (1980) Solubilization and reconstitution of the lactose transport system from Escherichia coli. J Biol Chem 255(22):10583–10586PubMedGoogle Scholar
  77. Newman MJ, Foster DL, Wilson TH, Kaback HR (1981) Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem 256(22):11804–11808PubMedGoogle Scholar
  78. Newstead S et al (2011) Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J 30(2):417–426PubMedPubMedCentralGoogle Scholar
  79. Nie Y, Kaback HR (2010) Sugar binding induces the same global conformational change in purified LacY as in the native bacterial membrane. Proc Natl Acad Sci USA 107(21):9903–9908PubMedPubMedCentralGoogle Scholar
  80. Nie Y, Ermolova N, Kaback HR (2007) Site-directed alkylation of LacY: effect of the proton electrochemical gradient. J Mol Biol 374(2):356–364PubMedPubMedCentralGoogle Scholar
  81. Nie Y, Sabetfard FE, Kaback HR (2008) The Cys154→Gly mutation in LacY causes constitutive opening of the hydrophilic periplasmic pathway. J Mol Biol 379(4):695–703PubMedPubMedCentralGoogle Scholar
  82. Nie Y, Zhou Y, Kaback HR (2009) Clogging the periplasmic pathway in LacY. Biochemistry 48(4):738–743PubMedPubMedCentralGoogle Scholar
  83. Padan E, Sarkar HK, Viitanen PV, Poonian MS, Kaback HR (1985) Site-specific mutagenesis of histidine residues in the lac permease of Escherichia coli. Proc Natl Acad Sci USA 82:6765–6768PubMedPubMedCentralGoogle Scholar
  84. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142(2):331–340PubMedGoogle Scholar
  85. Patzlaff JS, Moeller JA, Barry BA, Brooker RJ (1998) Fourier transform infrared analysis of purified lactose permease: a monodisperse lactose permease preparation is stably folded, alpha-helical, and highly accessible to deuterium exchange. Biochemistry 37(44):15363–15375PubMedGoogle Scholar
  86. Pedersen BP et al (2013) Crystal structure of a eukaryotic phosphate transporter. Nature 496(7446):533–536PubMedPubMedCentralGoogle Scholar
  87. Prive GG, Kaback HR (1996) Engineering the lac permease for purification and crystallization. J Bioenerg Biomembr 28(1):29–34PubMedGoogle Scholar
  88. Puttner IB, Kaback HR (1988) lac permease of Escherichia coli containing a single histidine residue is fully functional. Proc Natl Acad Sci USA 85(5):1467–1471PubMedPubMedCentralGoogle Scholar
  89. Puttner IB, Sarkar HK, Poonian MS, Kaback HR (1986) lac permease of Escherichia coli: histidine-205 and histidine-322 play different roles in lactose/H + symport. Biochemistry 25(16):4483–4485PubMedGoogle Scholar
  90. Radestock S, Forrest LR (2011) The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol 407(5):698–715PubMedGoogle Scholar
  91. Ramos S, Kaback HR (1977a) The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles. Biochemistry 16(5):854–859PubMedGoogle Scholar
  92. Ramos S, Kaback HR (1977b) The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 16(5):848–854PubMedGoogle Scholar
  93. Ramos S, Schuldiner S, Kaback HR (1976) The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc Natl Acad Sci USA 73(6):1892–1896PubMedPubMedCentralGoogle Scholar
  94. Robertson DE, Kaczorowski GJ, Garcia ML, Kaback HR (1980) Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Biochemistry 19(25):5692–5702PubMedGoogle Scholar
  95. Roepe PD, Kaback HR (1989) Site-directed mutagenesis of tyrosine residues in the lac permease of Escherichia coli. Biochemistry 28(14):6127–6132PubMedGoogle Scholar
  96. Sahin-Toth M, Kaback HR (1993) Properties of interacting aspartic acid and lysine residues in the lactose permease of Escherichia coli. Biochemistry 32(38):10027–10035PubMedGoogle Scholar
  97. Sahin-Tóth M, Kaback HR (2001) Arg-302 facilitates deprotonation of Glu-325 in the transport mechanism of the lactose permease from Escherichia coli. Proc Natl Acad Sci USA 98(11):6068–6073PubMedPubMedCentralGoogle Scholar
  98. Sahin-Tóth M, Lawrence MC, Kaback HR (1994) Properties of permease dimer, a fusion protein containing two lactose permease molecules from Escherichia coli. Proc Natl Acad Sci USA 91(12):5421–5425PubMedPubMedCentralGoogle Scholar
  99. Sahin-Tóth M et al (1999) Characterization of Glu126 and Arg144, two residues that are indispensable for substrate binding in the lactose permease of Escherichia coli. Biochemistry 38(2):813–819PubMedGoogle Scholar
  100. Sahin-Tóth M, Karlin A, Kaback HR (2000) Unraveling the mechanism of the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 97(20):10729–10732PubMedPubMedCentralGoogle Scholar
  101. Sayeed WM, Baenziger JE (2009) Structural characterization of the osmosensor ProP. Biochim Biophys Acta 1788(5):1108–1115PubMedGoogle Scholar
  102. Schowen RL (1977) Isotope effects on enzymes-catalyzed reactions. University Park Press, Baltimore, MD, pp 64–99Google Scholar
  103. Smirnova IN, Kaback HR (2003) A mutation in the lactose permease of Escherichia coli that decreases conformational flexibility and increases protein stability. Biochemistry 42(10):3025–3031PubMedGoogle Scholar
  104. Smirnova IN, Kasho VN, Kaback HR (2006) Direct sugar binding to lacy measured by resonance energy transfer. Biochemistry 45(51):15279–15287PubMedPubMedCentralGoogle Scholar
  105. Smirnova I et al (2007) Sugar binding induces an outward facing conformation of LacY. Proc Natl Acad Sci USA 104:16504–16509PubMedPubMedCentralGoogle Scholar
  106. Smirnova IN, Kasho V, Kaback HR (2008) Protonation and sugar binding to LacY. Proc Natl Acad Sci USA 105(26):8896–8901PubMedPubMedCentralGoogle Scholar
  107. Smirnova IN, Kasho VN, Sugihara J, Choe JY, Kaback HR (2009a) Residues in the H + translocation site define the pKa for sugar binding to LacY. Biochemistry 48(37):8852–8860PubMedPubMedCentralGoogle Scholar
  108. Smirnova I, Kasho V, Sugihara J, Kaback HR (2009b) Probing of the rates of alternating access in LacY with Trp fluorescence. Proc Natl Acad Sci USA 106(51):21561–21566PubMedPubMedCentralGoogle Scholar
  109. Smirnova I, Kasho V, Sugihara J, Kaback HR (2011) Opening the periplasmic cavity in lactose permease is the limiting step for sugar binding. Proc Natl Acad Sci USA 108(37):15147–15151PubMedPubMedCentralGoogle Scholar
  110. Smirnova I, Kasho V, Sugihara J, Vazquez-Ibar JL, Kaback HR (2012) Role of protons in sugar binding to LacY. Proc Natl Acad Sci USA 109(42):16835–16840PubMedPubMedCentralGoogle Scholar
  111. Smirnova I, Kasho V, Sugihara J, Kaback HR (2013) Trp replacements for tightly interacting Gly-Gly pairs in LacY stabilize an outward-facing conformation. Proc Natl Acad Sci USA 110(22):8876–8881PubMedPubMedCentralGoogle Scholar
  112. Solcan N et al (2012) Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31(16):3411–3421PubMedPubMedCentralGoogle Scholar
  113. Sorgen PL, Hu Y, Guan L, Kaback HR, Girvin ME (2002) An approach to membrane protein structure without crystals. Proc Natl Acad Sci USA 99(22):14037–14040PubMedPubMedCentralGoogle Scholar
  114. Soskine M, Adam Y, Schuldiner S (2004) Direct evidence for substrate-induced proton release in detergent-solubilized EmrE, a multidrug transporter. J Biol Chem 279(11):9951–9955PubMedGoogle Scholar
  115. Sugihara J, Smirnova I, Kasho V, Kaback HR (2011) Sugar recognition by CscB and LacY. Biochemistry 50(51):11009–11014PubMedPubMedCentralGoogle Scholar
  116. Sugihara J, Sun L, Yan N, Kaback HR (2012) Dynamics of the L-fucose/H + symporter revealed by fluorescence spectroscopy. Proc Natl Acad Sci USA 109(37):14847–14851PubMedPubMedCentralGoogle Scholar
  117. Sun J, Wu J, Carrasco N, Kaback HR (1996) Identification of the epitope for monoclonal antibody 4B1 which uncouples lactose and proton translocation in the lactose permease of Escherichia coli. Biochemistry 35(3):990–998PubMedGoogle Scholar
  118. Sun J, Li J, Carrasco N, Kaback HR (1997) The last two cytoplasmic loops in the lactose permease of Escherichia coli comprise a discontinuous epitope for a monoclonal antibody. Biochemistry 36(1):274–280PubMedGoogle Scholar
  119. Sun L et al (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490(7420):361–366PubMedGoogle Scholar
  120. Teather RM, Müller-Hill B, Abrutsch U, Aichele G, Overath P (1978) Amplification of the lactose carrier protein in Escherichia coli using a plasmid vector. Mol Gen Genet 159:239–248PubMedGoogle Scholar
  121. Trumble WR, Viitanen PV, Sarkar HK, Poonian MS, Kaback HR (1984) Site-directed mutagenesis of cys148 in the lac carrier protein of Escherichia coli. Biochem Biophys Res Commun 119(3):860–867PubMedGoogle Scholar
  122. Ujwal ML, Sahin-Toth M, Persson B, Kaback HR (1994) Role of glutamate-269 in the lactose permease of Escherichia coli. Mol Membr Biol 11(1):9–16PubMedGoogle Scholar
  123. Vadyvaloo V, Smirnova IN, Kasho VN, Kaback HR (2006) Conservation of residues involved in sugar/H(+) symport by the sucrose permease of Escherichia coli relative to lactose permease. J Mol Biol 358(4):1051–1059PubMedPubMedCentralGoogle Scholar
  124. van Iwaarden PR, Pastore JC, Konings WN, Kaback HR (1991) Construction of a functional lactose permease devoid of cysteine residues. Biochemistry 30(40):9595–9600PubMedGoogle Scholar
  125. Vazquez-Ibar JL, Guan L, Svrakic M, Kaback HR (2003) Exploiting luminescence spectroscopy to elucidate the interaction between sugar and a tryptophan residue in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 100(22):12706–12711PubMedPubMedCentralGoogle Scholar
  126. Vazquez-Ibar JL et al (2004) Sugar Recognition by the Lactose Permease of Escherichia coli. J Biol Chem 279(47):49214–49221PubMedGoogle Scholar
  127. Venkatesan P, Kaback HR (1998) The substrate-binding site in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 95(17):9802–9807PubMedPubMedCentralGoogle Scholar
  128. Venkatesan P, Kwaw I, Hu Y, Kaback HR (2000a) Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix VII. Biochemistry 39:10641–10648PubMedGoogle Scholar
  129. Venkatesan P, Liu Z, Hu Y, Kaback HR (2000b) Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix II. Biochemistry 39:10649–10655PubMedGoogle Scholar
  130. Viitanen P, Garcia ML, Foster DL, Kaczorowski GJ, Kaback HR (1983) Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 2. Deuterium solvent isotope effects. Biochemistry 22(10):2531–2536PubMedGoogle Scholar
  131. Viitanen P, Garcia ML, Kaback HR (1984) Purified reconstituted lac carrier protein from Escherichia coli is fully functional. Proc Natl Acad Sci USA 81(6):1629–1633PubMedPubMedCentralGoogle Scholar
  132. Viitanen PV, Menick DR, Sarkar HK, Trumble WR, Kaback HR (1985) Site-directed mutagenesis of cysteine-148 in the lac permease of Escherichia coli: effect on transport, binding, and sulfhydryl inactivation. Biochemistry 24(26):7628–7635PubMedGoogle Scholar
  133. Vogel H, Wright JK, Jähnig F (1985) The structure of the lactose permease derived from Raman spectroscopy and prediction methods. EMBO J 4(13A):3625–3631PubMedPubMedCentralGoogle Scholar
  134. Weinglass AB, Kaback HR (2000) The central cytoplasmic loop of the major facilitator superfamily of transport proteins governs efficient membrane insertion. Proc Natl Acad Sci USA 97(16):8938–8943PubMedPubMedCentralGoogle Scholar
  135. Weinglass AB, Sondej M, Kaback HR (2002) Manipulating conformational equilibria in the lactose permease of Escherichia coli. J Mol Biol 315(4):561–571PubMedGoogle Scholar
  136. Weinglass A, Whitelegge JP, Faull KF, Kaback HR (2004) Monitoring Conformational Rearrangements in the Substrate-binding Site of a Membrane Transport Protein by Mass Spectrometry. J Biol Chem 279(40):41858–41865PubMedGoogle Scholar
  137. White SH (2007) Membrane protein insertion: the biology-physics nexus. J Gen Physiol 129(5):363–369PubMedPubMedCentralGoogle Scholar
  138. Wolin C, Kaback HR (1999) Estimating loop-helix interfaces in a polytopic membrane protein by deletion analysis. Biochemistry 38(26):8590–8597PubMedGoogle Scholar
  139. Wolin CD, Kaback HR (2000) Thiol cross-linking of transmembrane domains IV and V in the lactose permease of Escherichia coli. Biochemistry 39(20):6130–6135PubMedGoogle Scholar
  140. Wu J, Kaback HR (1996) A general method for determining helix packing in membrane proteins in situ: helices I and II are close to helix VII in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 93(25):14498–14502PubMedPubMedCentralGoogle Scholar
  141. Yan H et al (2013) Structure and mechanism of a nitrate transporter. Cell Rep 3(3):716–723PubMedGoogle Scholar
  142. Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37(42):14713–14718PubMedGoogle Scholar
  143. Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312(5774):741–744PubMedPubMedCentralGoogle Scholar
  144. Zhang W, Guan L, Kaback HR (2002) Helices VII and X in the lactose permease of Escherichia coli: proximity and ligand-induced distance changes. J Mol Biol 315(1):53–62PubMedGoogle Scholar
  145. Zhao M et al (1999a) Nitroxide scanning electron paramagnetic resonance of helices IV, V and the intervening loop in the lactose permease of Escherichia coli. Biochemistry 38:15970–15977PubMedGoogle Scholar
  146. Zhao M, Zen KC, Hubbell WL, Kaback HR (1999b) Proximity between Glu126 and Arg144 in the lactose permease of Escherichia coli. Biochemistry 38(23):7407–7412PubMedGoogle Scholar
  147. Zheng H, Wisedchaisri G, Gonen T (2013) Crystal structure of a nitrate/nitrite exchanger. Nature 497(7451):647–651PubMedGoogle Scholar
  148. Zhou Y, Guan L, Freites JA, Kaback HR (2008) Opening and closing of the periplasmic gate in lactose permease. Proc Natl Acad Sci USA 105(10):3774–3778PubMedPubMedCentralGoogle Scholar
  149. Zhou Y, Jiang X, Kaback HR (2012) Role of the irreplaceable residues in the LacY alternating access mechanism. Proc Natl Acad Sci USA 109(31):12438–12442PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physiology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  2. 2.Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  3. 3.Molecular Biology Institute, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations