Development of Refined Homology Models: Adding the Missing Information to the Medically Relevant Neurotransmitter Transporters

  • Thomas StocknerEmail author
  • Andreas Jurik
  • René Weissensteiner
  • Michael Freissmuth
  • Gerhard F. Ecker
  • Harald H. Sitte
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 17)


Neurotransmitter:sodium symporters are located on presynaptic neurons and terminate neurotransmission by removing the monoamine substrates from the synaptic cleft. Until very recently, only several conformational snapshots/structures of a bacterial homolog of neurotransmitter:sodium symporters, namely, the leucine/alanine transporter LeuT from Aquifex aeolicus, were available. However, this transporter shares only 21b % overall sequence identity with its human homologs. In this chapter, we describe how a model can be developed from a template with such low identity. The effort of model building will strongly depend on the purpose. We discuss this process and focus on the important steps that allowed us to obtain a model which can be used for molecular dynamics simulations. Furthermore, we also highlight the inherent limitations of the proposed approaches. Prediction of ligand binding brings in additional complexity. Therefore, experimental scrutiny of the resulting models is a key component to successful validation. We describe two specific examples: model building of the dopamine transporter and ligand docking to the serotonin transporter. We evaluate our modeling approach by direct comparison of our models to the recently published first eukaryotic neurotransmitter:sodium symporter, the drosophila melanogaster DAT transporter.


Dopamine transporter Homology modelling Homology model optimization Molecular dynamics simulations Neurotransmitter:sodium symporter models Protein ligand docking Serotonin transporter Tricyclic antidepressants 



The financial support from the Austrian Science Fund (FWF) project “Transmembrane Transporters in Health and Disease” (SFB F35) and the DK + project “Ion Channels and Transporters as Molecular Drug Targets” is gratefully acknowledged.


  1. Andersen J, Taboureau O, Hansen KB et al (2009) Location of the antidepressant binding site in the serotonin transporter: importance of Ser-438 in recognition of citalopram and tricyclic antidepressants. J Biol Chem 284:10276–10284. doi: 10.1074/jbc.M806907200 PubMedCentralPubMedGoogle Scholar
  2. Aurora R, Rose GD (1998) Helix capping. Protein Sci 7:21–38. doi: 10.1002/pro.5560070103 PubMedCentralPubMedGoogle Scholar
  3. Aurora R, Srinivasan R, Rose GD (1994) Rules for alpha-helix termination by glycine. Science 264:1126–1130PubMedGoogle Scholar
  4. Barker EL, Moore KR, Rakhshan F, Blakely RD (1999) Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J Neurosci 19:4705–4717PubMedGoogle Scholar
  5. Benkert P, Tosatto SCE, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71:261–277. doi: 10.1002/prot.21715 PubMedGoogle Scholar
  6. Bennett-Lovsey RM, Herbert AD, Sternberg MJE, Kelley LA (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70:611–625. doi: 10.1002/prot.21688 PubMedGoogle Scholar
  7. Beuming T, Shi L, Javitch JA, Weinstein H (2006) A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharmacol 70:1630–1642. doi: 10.1124/mol.106.026120 PubMedGoogle Scholar
  8. Beuming T, Kniazeff J, Bergmann ML et al (2008) The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat Neurosci 11:780–789. doi: 10.1038/nn.2146 PubMedCentralPubMedGoogle Scholar
  9. Bowman GR, Voelz VA, Pande VS (2011) Atomistic folding simulations of the five-helix bundle protein λ(6−85). J Am Chem Soc 133:664–667. doi: 10.1021/ja106936n PubMedCentralPubMedGoogle Scholar
  10. Brenner SE, Chothia C, Hubbard TJ (1997) Population statistics of protein structures: lessons from structural classifications. Curr Opin Struct Biol 7:369–376PubMedGoogle Scholar
  11. Bulling S, Schicker K, Zhang Y-W et al (2012) The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters. J Biol Chem 287:18524–18534. doi: 10.1074/jbc.M112.343681 PubMedCentralPubMedGoogle Scholar
  12. Cantor RS (1997) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36:2339–2344. doi: 10.1021/bi9627323 PubMedGoogle Scholar
  13. Canutescu AA, Shelenkov AA, Dunbrack RL (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12:2001–2014. doi: 10.1110/ps.03154503 PubMedCentralPubMedGoogle Scholar
  14. Celik L, Sinning S, Severinsen K et al (2008) Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation. J Am Chem Soc 130:3853–3865. doi: 10.1021/ja076403h PubMedGoogle Scholar
  15. Chamberlain AK, Lee Y, Kim S, Bowie JU (2004) Snorkeling preferences foster an amino acid composition bias in transmembrane helices. J Mol Biol 339:471–479. doi: 10.1016/j.jmb.2004.03.072 PubMedGoogle Scholar
  16. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265. doi: 10.1126/science.1150577 PubMedCentralPubMedGoogle Scholar
  17. Chien EYT, Liu W, Zhao Q et al (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095. doi: 10.1126/science.1197410 PubMedCentralPubMedGoogle Scholar
  18. Choi Y, Deane CM (2010) FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 78:1431–1440. doi: 10.1002/prot.22658 PubMedGoogle Scholar
  19. Dalton JAR, Jackson RM (2010) Homology-modelling protein–ligand interactions: allowing for ligand-induced conformational change. J Mol Biol 399:645–661. doi: 10.1016/j.jmb.2010.04.047 PubMedGoogle Scholar
  20. Davis IW, Leaver-Fay A, Chen VB et al (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383. doi: 10.1093/nar/gkm216 PubMedCentralPubMedGoogle Scholar
  21. Deane CM, Blundell TL (2001) CODA: a combined algorithm for predicting the structurally variable regions of protein models. Protein Sci 10:599–612. doi: 10.1110/ps.37601 PubMedCentralPubMedGoogle Scholar
  22. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–744PubMedGoogle Scholar
  23. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404PubMedGoogle Scholar
  24. Evers A, Gohlke H, Klebe G (2003) Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials. J Mol Biol 334:327–345. doi: 10.1016/j.jmb.2003.09.032 PubMedGoogle Scholar
  25. Faure G, Bornot A, de Brevern AG (2008) Protein contacts, inter-residue interactions and side-chain modelling. Biochimie 90:626–639. doi: 10.1016/j.biochi.2007.11.007 PubMedGoogle Scholar
  26. Fernandez-Fuentes N, Madrid-Aliste CJ, Rai BK et al (2007) M4T: a comparative protein structure modeling server. Nucleic Acids Res 35:W363–W368. doi: 10.1093/nar/gkm341 PubMedCentralPubMedGoogle Scholar
  27. Forrest LR, Tang CL, Honig B (2006) On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys J 91:508–517. doi: 10.1529/biophysj.106.082313 PubMedCentralPubMedGoogle Scholar
  28. Freddolino PL, Schulten K (2009) Common structural transitions in explicit-solvent simulations of villin headpiece folding. Biophys J 97:2338–2347. doi: 10.1016/j.bpj.2009.08.012 PubMedCentralPubMedGoogle Scholar
  29. Friesner RA, Abel R, Goldfeld DA et al (2013) Computational methods for high resolution prediction and refinement of protein structures. Curr Opin Struct Biol 23:177–184. doi: 10.1016/ PubMedGoogle Scholar
  30. Gedeon PC, Indarte M, Surratt CK, Madura JD (2010) Molecular dynamics of leucine and dopamine transporter proteins in a model cell membrane lipid bilayer. Proteins 78:797–811. doi: 10.1002/prot.22601 PubMedGoogle Scholar
  31. Haga K, Kruse AC, Asada H et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551. doi: 10.1038/nature10753 PubMedCentralPubMedGoogle Scholar
  32. Huang X, Zhan C-G (2007) How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J 93:3627–3639. doi: 10.1529/biophysj.107.110924 PubMedCentralPubMedGoogle Scholar
  33. Huang ES, Koehl P, Levitt M et al (1998) Accuracy of side-chain prediction upon near-native protein backbones generated by Ab initio folding methods. Proteins 33:204–217PubMedGoogle Scholar
  34. Indarte M, Madura JD, Surratt CK (2008) Dopamine transporter comparative molecular modeling and binding site prediction using the LeuT(Aa) leucine transporter as a template. Proteins 70:1033–1046. doi: 10.1002/prot.21598 PubMedGoogle Scholar
  35. Jaakola V-P, Griffith MT, Hanson MA et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217. doi: 10.1126/science.1164772 PubMedCentralPubMedGoogle Scholar
  36. Jacobson MP, Pincus DL, Rapp CS et al (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367. doi: 10.1002/prot.10613 PubMedGoogle Scholar
  37. Jaroszewski L (2009) Protein structure prediction based on sequence similarity. Methods Mol Biol 569:129–156. doi: 10.1007/978-1-59745-524-4_7 PubMedGoogle Scholar
  38. Jerabek H, Pabst G, Rappolt M, Stockner T (2010) Membrane-mediated effect on ion channels induced by the anesthetic drug ketamine. J Am Chem Soc 132:7990–7997. doi: 10.1021/ja910843d PubMedGoogle Scholar
  39. Kardos J, Palló A, Bencsura A, Simon A (2010) Assessing structure, function and druggability of major inhibitory neurotransmitter gamma-aminobutyrate symporter subtypes. Curr Med Chem 17:2203–2213PubMedGoogle Scholar
  40. Kelm S, Shi J, Deane CM (2010) MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26:2833–2840. doi: 10.1093/bioinformatics/btq554 PubMedCentralPubMedGoogle Scholar
  41. Kinch L, Yong Shi S, Cong Q et al (2011) CASP9 assessment of free modeling target predictions. Proteins 79(Suppl 1):59–73. doi: 10.1002/prot.23181 PubMedCentralPubMedGoogle Scholar
  42. Klepsch F, Chiba P, Ecker GF (2011) Exhaustive sampling of docking poses reveals binding hypotheses for propafenone type inhibitors of P-glycoprotein. PLoS Comput Biol 7(5):e1002036. doi: 10.1371/journal.pcbi.1002036 PubMedCentralPubMedGoogle Scholar
  43. Koldsø H, Christiansen AB, Sinning S, Schiøtt B (2013) Comparative modeling of the human monoamine transporters: similarities in substrate binding. ACS Chem Neurosci 4:295–309. doi: 10.1021/cn300148r PubMedCentralPubMedGoogle Scholar
  44. Kristensen AS, Andersen J, Jørgensen TN et al (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640. doi: 10.1124/pr.108.000869 PubMedGoogle Scholar
  45. Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77:778–795. doi: 10.1002/prot.22488 PubMedCentralPubMedGoogle Scholar
  46. Kryshtafovych A, Fidelis K (2009) Protein structure prediction and model quality assessment. Drug Discov Today 14:386–393. doi: 10.1016/j.drudis.2008.11.010 PubMedCentralPubMedGoogle Scholar
  47. Kryshtafovych A, Fidelis K, Moult J (2011a) CASP9 results compared to those of previous CASP experiments. Proteins 79(Suppl 1):196–207. doi: 10.1002/prot.23182 PubMedGoogle Scholar
  48. Kryshtafovych A, Fidelis K, Tramontano A (2011b) Evaluation of model quality predictions in CASP9. Proteins 79(Suppl 1):91–106. doi: 10.1002/prot.23180 PubMedCentralPubMedGoogle Scholar
  49. Lane TJ, Shukla D, Beauchamp KA, Pande VS (2013) To milliseconds and beyond: challenges in the simulation of protein folding. Curr Opin Struct Biol 23:58–65. doi: 10.1016/ PubMedCentralPubMedGoogle Scholar
  50. Law RJ, Capener C, Baaden M et al (2005) Membrane protein structure quality in molecular dynamics simulation. J Mol Graph Model 24:157–165. doi: 10.1016/j.jmgm.2005.05.006 PubMedGoogle Scholar
  51. Levitt M (1992) Accurate modeling of protein conformation by automatic segment matching. J Mol Biol 226:507–533PubMedGoogle Scholar
  52. Liang S, Grishin NV (2002) Side-chain modeling with an optimized scoring function. Protein Sci 11:322–331. doi: 10.1110/ps.24902 PubMedCentralPubMedGoogle Scholar
  53. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334:517–520. doi: 10.1126/science.1208351 PubMedGoogle Scholar
  54. Liu X, Fan K, Wang W (2004) The number of protein folds and their distribution over families in nature. Proteins 54:491–499. doi: 10.1002/prot.10514 PubMedGoogle Scholar
  55. Liu T, Geng X, Zheng X et al (2012) Accurate prediction of protein structural class using auto covariance transformation of PSI-BLAST profiles. Amino Acids 42:2243–2249. doi: 10.1007/s00726-011-0964-5 PubMedGoogle Scholar
  56. Loland CJ, Norregaard L, Gether U (1999) Defining proximity relationships in the tertiary structure of the dopamine transporter. J Biol Chem 274:36928–36934PubMedGoogle Scholar
  57. Lundström J, Rychlewski L, Bujnicki J, Elofsson A (2001) Pcons: a neural-network-based consensus predictor that improves fold recognition. Protein Sci 10:2354–2362PubMedCentralPubMedGoogle Scholar
  58. MacCallum JL, Bennett WFD, Tieleman DP (2007) Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J Gen Physiol 129:371–377. doi: 10.1085/jgp.200709745 PubMedCentralPubMedGoogle Scholar
  59. MacCallum JL, Pérez A, Schnieders MJ et al (2011) Assessment of protein structure refinement in CASP9. Proteins 79(Suppl 1):74–90. doi: 10.1002/prot.23131 PubMedCentralPubMedGoogle Scholar
  60. Makino CL, Riley CK, Looney J et al (2010) Binding of more than one retinoid to visual opsins. Biophys J 99:2366–2373. doi: 10.1016/j.bpj.2010.08.003 PubMedCentralPubMedGoogle Scholar
  61. Mariani V, Kiefer F, Schmidt T et al (2011) Assessment of template based protein structure predictions in CASP9. Proteins 79(Suppl 1):37–58. doi: 10.1002/prot.23177 PubMedGoogle Scholar
  62. Martí-Renom MA, Stuart AC, Fiser A et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325. doi: 10.1146/annurev.biophys.29.1.291 PubMedGoogle Scholar
  63. McGuffin LJ (2007) Benchmarking consensus model quality assessment for protein fold recognition. BMC Bioinforma 8:345. doi: 10.1186/1471-2105-8-345 Google Scholar
  64. Moretti S, Armougom F, Wallace IM et al (2007) The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 35:W645–W648. doi: 10.1093/nar/gkm333 PubMedCentralPubMedGoogle Scholar
  65. Moult J (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol 15:285–289. doi: 10.1016/ PubMedGoogle Scholar
  66. Noé F, Schütte C, Vanden-Eijnden E et al (2009) Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc Natl Acad Sci U S A 106:19011–19016. doi: 10.1073/pnas.0905466106 PubMedCentralPubMedGoogle Scholar
  67. Norregaard L, Frederiksen D, Nielsen EO, Gether U (1998) Delineation of an endogenous zinc-binding site in the human dopamine transporter. EMBO J 17:4266–4273. doi: 10.1093/emboj/17.15.4266 PubMedCentralPubMedGoogle Scholar
  68. Nugent T, Jones DT (2012) Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis. Proc Natl Acad Sci U S A 109:E1540–E1547. doi: 10.1073/pnas.1120036109 PubMedCentralPubMedGoogle Scholar
  69. Paczkowski FA, Sharpe IA, Dutertre S, Lewis RJ (2007) χ-Conotoxin and tricyclic antidepressant interactions at the norepinephrine transporter define a new transporter model. J Biol Chem 282:17837–17844. doi: 10.1074/jbc.M610813200 PubMedGoogle Scholar
  70. Palló A, Bencsura A, Héja L et al (2007) Major human gamma-aminobutyrate transporter: in silico prediction of substrate efficacy. Biochem Biophys Res Commun 364:952–958. doi: 10.1016/j.bbrc.2007.10.108 PubMedGoogle Scholar
  71. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358. doi: 10.1038/nature10238 PubMedCentralPubMedGoogle Scholar
  72. Peng H-P, Yang A-S (2007) Modeling protein loops with knowledge-based prediction of sequence-structure alignment. Bioinformatics 23:2836–2842. doi: 10.1093/bioinformatics/btm456 PubMedGoogle Scholar
  73. Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503(7474):85–90. doi: 10.1038/nature12533 Google Scholar
  74. Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703. doi: 10.1038/nsb827 PubMedGoogle Scholar
  75. Punta M, Forrest LR, Bigelow H et al (2007) Membrane protein prediction methods. Methods 41:460–474. doi: 10.1016/j.ymeth.2006.07.026 PubMedCentralPubMedGoogle Scholar
  76. Raval A, Piana S, Eastwood MP et al (2012) Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins 80:2071–2079. doi: 10.1002/prot.24098 PubMedGoogle Scholar
  77. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93PubMedGoogle Scholar
  78. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi: 10.1006/jmbi.1993.1626 PubMedGoogle Scholar
  79. Samuli Ollila OH, Louhivuori M, Marrink SJ, Vattulainen I (2011) Protein shape change has a major effect on the gating energy of a mechanosensitive channel. Biophys J 100:1651–1659. doi: 10.1016/j.bpj.2011.02.027 PubMedCentralPubMedGoogle Scholar
  80. Sarker S, Weissensteiner R, Steiner I et al (2010) The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter. Mol Pharmacol 78:1026–1035. doi: 10.1124/mol.110.067538 PubMedGoogle Scholar
  81. Schellman C (1980) The alpha-L conformation at the ends of helices. In: Jaenicke R (ed) Protein fold. Elsevier, New York, NY, pp 53–56Google Scholar
  82. Schlessinger A, Geier E, Fan H et al (2011) Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc Natl Acad Sci U S A 108:15810–15815. doi: 10.1073/pnas.1106030108 PubMedCentralPubMedGoogle Scholar
  83. Schlessinger A, Wittwer MB, Dahlin A et al (2012) High selectivity of the γ-aminobutyric acid transporter 2 (GAT-2, SLC6A13) revealed by structure-based approach. J Biol Chem 287:37745–37756. doi: 10.1074/jbc.M112.388157 PubMedCentralPubMedGoogle Scholar
  84. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385PubMedCentralPubMedGoogle Scholar
  85. Shafrir Y, Durell SR, Guy HR (2008) Models of the structure and gating mechanisms of the pore domain of the NaChBac ion channel. Biophys J 95:3650–3662. doi: 10.1529/biophysj.108.135327 PubMedCentralPubMedGoogle Scholar
  86. Shen M-Y, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524. doi: 10.1110/ps.062416606 PubMedCentralPubMedGoogle Scholar
  87. Shirts M, Pande VS (2000) COMPUTING: screen savers of the world unite! Science 290:1903–1904. doi: 10.1126/science.290.5498.1903 PubMedGoogle Scholar
  88. Singh SK, Piscitelli CL, Yamashita A, Gouaux E (2008) A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322:1655–1661. doi: 10.1126/science.1166777 PubMedCentralPubMedGoogle Scholar
  89. Sippl MJ (1995) Knowledge-based potentials for proteins. Curr Opin Struct Biol 5:229–235PubMedGoogle Scholar
  90. Skovstrup S, Taboureau O, Bräuner-Osborne H, Jørgensen FS (2010) Homology modelling of the GABA transporter and analysis of tiagabine binding. ChemMedChem 5:986–1000. doi: 10.1002/cmdc.201000100 PubMedGoogle Scholar
  91. Söding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960. doi: 10.1093/bioinformatics/bti125 PubMedGoogle Scholar
  92. Stockner T, Montgomery TR, Kudlacek O et al (2013) Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model. PLoS Comput Biol 9:e1002909. doi: 10.1371/journal.pcbi.1002909 PubMedCentralPubMedGoogle Scholar
  93. Tieleman DP, Marrink SJ, Berendsen HJ (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270PubMedGoogle Scholar
  94. Tosatto SCE, Bindewald E, Hesser J, Männer R (2002) A divide and conquer approach to fast loop modeling. Protein Eng 15:279–286PubMedGoogle Scholar
  95. Uhl G (2003) The top 20 dopamine transporter mutants: structure–function relationships and cocaine actions. Eur J Pharmacol 479:71–82. doi: 10.1016/j.ejphar.2003.08.058 PubMedGoogle Scholar
  96. Voelz VA, Bowman GR, Beauchamp K, Pande VS (2010) Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J Am Chem Soc 132:1526–1528. doi: 10.1021/ja9090353 PubMedCentralPubMedGoogle Scholar
  97. Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086. doi: 10.1110/ps.0236803.a Google Scholar
  98. Wallner B, Elofsson A (2005) All are not equal: a benchmark of different homology modeling programs. Protein Sci 14:1315–1327. doi: 10.1110/ps.041253405 PubMedCentralPubMedGoogle Scholar
  99. Warne T, Moukhametzianov R, Baker JG et al (2011) The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor. Nature 469:241–244. doi: 10.1038/nature09746 PubMedCentralPubMedGoogle Scholar
  100. Warren GL, Andrews CW, Capelli A-M et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931. doi: 10.1021/jm050362n PubMedGoogle Scholar
  101. Wein T, Wanner KT (2010) Generation of a 3D model for human GABA transporter hGAT-1 using molecular modeling and investigation of the binding of GABA. J Mol Model 16:155–161. doi: 10.1007/s00894-009-0520-3 PubMedGoogle Scholar
  102. Wu B, Chien EYT, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071. doi: 10.1126/science.1194396 PubMedCentralPubMedGoogle Scholar
  103. Xhaard H, Backström V, Denessiouk K, Johnson MS (2008) Coordination of Na+ by monoamine ligands in dopamine, norepinephrine, and serotonin transporters. J Chem Inf Model 48:1423–1437. doi: 10.1021/ci700255d PubMedGoogle Scholar
  104. Xiang Z (2006) Advances in homology protein structure modeling. Curr Protein Pept Sci 7:217–227PubMedCentralPubMedGoogle Scholar
  105. Xiang Z, Steinbach PJ, Jacobson MP et al (2007) Prediction of side-chain conformations on protein surfaces. Proteins 66:814–823. doi: 10.1002/prot.21099 PubMedCentralPubMedGoogle Scholar
  106. Yamashita A, Singh SK, Kawate T et al (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223. doi: 10.1038/nature03978 PubMedGoogle Scholar
  107. Yarov-Yarovoy V, Schonbrun J, Baker D (2006) Multipass membrane protein structure prediction using Rosetta. Proteins 62:1010–1025. doi: 10.1002/prot.20817 PubMedCentralPubMedGoogle Scholar
  108. Zhang Y, Arakaki AK, Skolnick J (2005) TASSER: an automated method for the prediction of protein tertiary structures in CASP6. Proteins 61(Suppl 7):91–98. doi: 10.1002/prot.20724 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Stockner
    • 1
    Email author
  • Andreas Jurik
    • 2
  • René Weissensteiner
    • 2
  • Michael Freissmuth
    • 1
  • Gerhard F. Ecker
    • 2
  • Harald H. Sitte
    • 1
  1. 1.Center of Physiology and Pharmacology, Institute of PharmacologyMedical University ViennaViennaAustria
  2. 2.Department of Pharmaceutical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations