Advertisement

Structures of the Prokaryotic Galactose Transporter vSGLT and Their Implications on Alternating Access Mechanism in Human SGLT1

  • Jeff Abramson
  • Aviv Paz
  • Armand S. Vartanian
Chapter
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 17)

Abstract

Secondary active transporters couple electrochemical energy to the transport of solutes across biological membrane. The sodium solute symporters (SSS) comprise a large family of secondary active transporters fundamental to the homeostasis of a variety of solutes including sugars, inositols, anions, short chain fatty acids, choline, and vitamins. This chapter will explicate the structural framework of the sodium galactose transporter from Vibrio parahaemolyticus (vSGLT) and focus on mechanistic hypothesis drawn from these structures, some of which were directly transferable to the human homologues of vSGLT, which are members of the medically important SLC5 family. Compiling functional, structural, and bioinformatics data generated from these studies and incorporating unique conformations from structurally similar proteins, we propose a modified mechanism for sodium-dependent transport.

Keywords

Glucose transport Sugar transport Homology modeling Symporters Membrane protein expression systems Lipidic crystallization 

References

  1. Abramson J, Wright EM (2009) Structure and function of Na(+)-symporters with inverted repeats. Curr Opin Struct Biol 19:425–432PubMedCentralPubMedCrossRefGoogle Scholar
  2. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615PubMedCrossRefGoogle Scholar
  3. Bizhanova A, KOPP P (2009) Minireview: the sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology 150:1084–1090PubMedCentralPubMedCrossRefGoogle Scholar
  4. Caffrey M (2011) Crystallizing membrane proteins for structure-function studies using lipidic mesophases. Biochem Soc Trans 39:725–732PubMedCentralPubMedGoogle Scholar
  5. Celik L, Schiøtt B, Tajkhorshid E (2008) Substrate binding and formation of an occluded state in the leucine transporter. Biophys J 94:1600–1612PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226PubMedCrossRefGoogle Scholar
  7. Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21:559–566PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cherezov V, Liu J, Griffith M, Hanson MA, Stevens RC (2008) LCP-FRAP assay for pre-screening membrane proteins for in meso crystallization. Cryst Growth Des 8:4307–4315PubMedCentralPubMedCrossRefGoogle Scholar
  10. Claxton DP, Quick M, Shi L, DE Carvalho FD, Weinstein H, Javitch JA, Mchaourab HS (2010) Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nat Struct Mol Biol 17:822–829PubMedCentralPubMedCrossRefGoogle Scholar
  11. Drew D, Kim H (2012) Large-scale production of membrane proteins in Saccharomyces cerevisiae: using a green fluorescent protein fusion strategy in the production of membrane proteins. Methods Mol Biol 866:209–216PubMedCrossRefGoogle Scholar
  12. Drew D, Sjostrand D, Nilsson J, Urbig T, Chin CN, DE Gier JW, von Heijne G (2002) Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci USA 99:2690–2695PubMedCentralPubMedCrossRefGoogle Scholar
  13. Drew D, Newstead S, Sonoda Y, Kim H, von Heijne G, Iwata S (2008) GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc 3:784–798PubMedCentralPubMedCrossRefGoogle Scholar
  14. Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316:1–6PubMedCrossRefGoogle Scholar
  15. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814PubMedCentralPubMedCrossRefGoogle Scholar
  16. Forrest LR, Zhang Y-W, Jacobs MT, Gesmonde J, Xie L, Honig BH, Rudnick G (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci USA 105:10338–10343PubMedCentralPubMedCrossRefGoogle Scholar
  17. Forrest LR, Kramer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochim Biophys Acta 1807:167–188PubMedCrossRefGoogle Scholar
  18. Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S, Prasad PD (2008) Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J 10:193–199PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gao X, Lu F, Zhou L, Dang S, Sun L, Li X, Wang J, Shi Y (2009) Structure and mechanism of an amino acid antiporter. Science 324:1565–1568PubMedCrossRefGoogle Scholar
  20. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485:400–404PubMedCentralPubMedCrossRefGoogle Scholar
  21. Guan L, Kaback HR (2006) Lessons from lactose permease. Annu Rev Biophys Biomol Struct 35:67–91PubMedCentralPubMedCrossRefGoogle Scholar
  22. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, Stevens RC (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335:851–855PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hattori M, Hibbs RE, GOUAUX E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20:1293–1299PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N, Cameron AD, Kobayashi T, Hamakubo T, Iwata S, Murata T (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240PubMedCentralPubMedGoogle Scholar
  26. Hsieh JM, Besserer GM, Madej MG, Bui HQ, Kwon S, Abramson J (2010) Bridging the gap: a GFP-based strategy for overexpression and purification of membrane proteins with intra and extracellular C-termini. Protein Sci 19:868–880PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202PubMedCrossRefGoogle Scholar
  28. Ishikawa N, Oguri T, Isobe T, Fujitaka K, Kohno N (2001) SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn J Cancer Res 92:874–879PubMedCrossRefGoogle Scholar
  29. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970PubMedCrossRefGoogle Scholar
  30. Jaroszewski L, Slabinski L, Wooley J, Deacon AM, Lesley SA, Wilson IA, Godzik A (2008) Genome pool strategy for structural coverage of protein families. Structure 16:1659–1667PubMedCentralPubMedCrossRefGoogle Scholar
  31. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323PubMedCrossRefGoogle Scholar
  32. Jeschke G (2013) A comparative study of structures and structural transitions of secondary transporters with the LeuT fold. Eur Biophys J 42:181–197PubMedCentralPubMedCrossRefGoogle Scholar
  33. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681PubMedCrossRefGoogle Scholar
  34. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598PubMedCentralPubMedCrossRefGoogle Scholar
  35. Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:469–474PubMedCentralPubMedCrossRefGoogle Scholar
  36. Krupka RM (1993) Coupling mechanisms in active transport. Biochim Biophys Acta 1183:105–113PubMedCrossRefGoogle Scholar
  37. Li J, Tajkhorshid E (2009) Ion-releasing state of a secondary membrane transporter. Biophys J 97:L29–L31PubMedCentralPubMedCrossRefGoogle Scholar
  38. Li J, Shaikh SA, Enkavi G, Wen PC, Huang Z, Tajkhorshid E (2013) Transient formation of water-conducting states in membrane transporters. Proc Natl Acad Sci USA 110:7696–7701PubMedCentralPubMedCrossRefGoogle Scholar
  39. Lolkema JS, Dobrowolski A, Slotboom DJ (2008) Evolution of antiparallel two-domain membrane proteins: tracing multiple gene duplication events in the DUF606 family. J Mol Biol 378:596–606PubMedCrossRefGoogle Scholar
  40. Majumdar DS, Smirnova I, Kasho V, Nir E, Kong X, Weiss S, Kaback HR (2007) Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. Proc Natl Acad Sci USA 104:12640–12645PubMedCentralPubMedCrossRefGoogle Scholar
  41. Malawski GA, Hillig RC, Monteclaro F, Eberspaecher U, Schmitz AA, Crusius K, Huber M, Egner U, Donner P, Muller-Tiemann B (2006) Identifying protein construct variants with increased crystallization propensity–a case study. Protein Sci 15:2718–2728PubMedCentralPubMedCrossRefGoogle Scholar
  42. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485:321–326PubMedCentralPubMedCrossRefGoogle Scholar
  43. Noskov SY, Roux B (2008) Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. J Mol Biol 377:804–818PubMedCrossRefGoogle Scholar
  44. Quick M, Loo DD, Wright EM (2001) Neutralization of a conserved amino acid residue in the human Na+/glucose transporter (hSGLT1) generates a glucose-gated H+ channel. J Biol Chem 276:1728–1734PubMedCrossRefGoogle Scholar
  45. Quick M, Winther AM, Shi L, Nissen P, Weinstein H, Javitch JA (2009) Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc Natl Acad Sci USA 106:5563–5568PubMedCentralPubMedCrossRefGoogle Scholar
  46. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011a) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469:175–180PubMedCentralPubMedCrossRefGoogle Scholar
  47. Rasmussen SG, Devree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011b) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555PubMedCentralPubMedCrossRefGoogle Scholar
  48. Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V, Ziegler C (2009) Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458:47–52PubMedCrossRefGoogle Scholar
  49. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273PubMedCrossRefGoogle Scholar
  50. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469:236–240PubMedCentralPubMedCrossRefGoogle Scholar
  51. Sala-Rabanal M, Hirayama BA, Loo DD, Chaptal V, Abramson J, Wright EM (2012) Bridging the gap between structure and kinetics of human SGLT1. Am J Physiol Cell Physiol 302:C1293–C1305PubMedCentralPubMedCrossRefGoogle Scholar
  52. Schulze S, Koster S, Geldmacher U, Terwisscha Van Scheltinga AC, Kuhlbrandt W (2010) Structural basis of Na(+)-independent and cooperative substrate/product antiport in CaiT. Nature 467:233–236PubMedCrossRefGoogle Scholar
  53. Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E (2009) Structure and mechanism of a Na+-independent amino acid transporter. Science 325:1010–1014PubMedCentralPubMedCrossRefGoogle Scholar
  54. Shi L, Quick M, Zhao Y, Weinstein H, Javitch JA (2008) The mechanism of a neurotransmitter:sodium symporter–inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell 30:667–677PubMedCentralPubMedCrossRefGoogle Scholar
  55. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70PubMedCentralPubMedCrossRefGoogle Scholar
  56. Smirnova I, Kasho V, Choe JY, Altenbach C, Hubbell WL, Kaback HR (2007) Sugar binding induces an outward facing conformation of LacY. Proc Natl Acad Sci USA 104:16504–16509PubMedCentralPubMedCrossRefGoogle Scholar
  57. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745–756PubMedCentralPubMedCrossRefGoogle Scholar
  58. Sujatha MS, Balaji PV (2004) Identification of common structural features of binding sites in galactose-specific proteins. Proteins 55:44–65PubMedCrossRefGoogle Scholar
  59. Ujwal R, Abramson J (2012) High-throughput crystallization of membrane proteins using the lipidic bicelle method. J Vis Exp (59):e3383Google Scholar
  60. Veenstra M, Lanza S, Hirayama BA, Turk E, Wright EM (2004) Local conformational changes in the Vibrio Na+/galactose cotransporter. Biochemistry 43:3620–3627PubMedCrossRefGoogle Scholar
  61. Wadsten P, Wohri AB, Snijder A, Katona G, Gardiner AT, Cogdell RJ, Neutze R, Engstrom S (2006) Lipidic sponge phase crystallization of membrane proteins. J Mol Biol 364:44–53PubMedCrossRefGoogle Scholar
  62. Watanabe A, Choe S, Chaptal V, Rosenberg JM, Wright EM, Grabe M, Abramson J (2010) The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature 468:988–991PubMedCentralPubMedCrossRefGoogle Scholar
  63. Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O’reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PC, Iwata S, Henderson PJ, Cameron AD (2008) Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322:709–713PubMedCentralPubMedCrossRefGoogle Scholar
  64. Wong FH, Chen JS, Reddy V, Day JL, Shlykov MA, Wakabayashi ST, Saier MH Jr (2012) The amino acid-polyamine-organocation superfamily. J Mol Microbiol Biotechnol 22:105–113PubMedCrossRefGoogle Scholar
  65. Wright EM (2013) Glucose transport families SLC5 and SLC50. Mol Aspects Med 34:183–196PubMedCrossRefGoogle Scholar
  66. Wright EM, Loo DD, Hirayama BA, Turk E (2004) Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology (Bethesda) 19:370–376CrossRefGoogle Scholar
  67. Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794PubMedCrossRefGoogle Scholar
  68. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437:215–223PubMedCrossRefGoogle Scholar
  69. Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818PubMedCrossRefGoogle Scholar
  70. Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492:387–392PubMedCentralPubMedCrossRefGoogle Scholar
  71. Zhou Z, Zhen J, Karpowich NK, Goetz RM, Law CJ, Reith ME, Wang DN (2007) LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science 317:1390–1393PubMedCentralPubMedCrossRefGoogle Scholar
  72. Zou JY, Flocco MM, Mowbray SL (1993) The 1.7 A refined X-ray structure of the periplasmic glucose/galactose receptor from Salmonella typhimurium. J Mol Biol 233:739–752PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jeff Abramson
    • 1
    • 2
  • Aviv Paz
    • 1
  • Armand S. Vartanian
    • 1
    • 2
  1. 1.Department of Physiology, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  2. 2.Institute for Stem Cell Biology and Regenerative Medicine, NCBS-TIFRBangaloreIndia

Personalised recommendations