Skip to main content

Current and Emergent Control Strategies for Medical Biofilms

  • Chapter
  • First Online:
Antibiofilm Agents

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 8))

Abstract

In nature, microorganisms prefer to live in structured microbial communities rather than as free-floating planktonic cells. These dynamic microbial communities are termed biofilms, in which transitions between planktonic and sessile modes of growth occur interchangeably in response to different environmental cues. Such phenomenas are advantageous for microbial pathogens but disadvantageous for human health. Due to the increased resistance/tolerance of biofilm cells to antimicrobial treatment, it becomes difficult to eradicate pathogens, which results in relapses of infections even after appropriate therapy. In clinically relevant biofilms, Pseudomonas spp., Staphylococcus spp., and Candida spp. are the most frequently isolated microorganisms. These microorganisms are able to adhere to and colonize surfaces of medical devices such as central venous catheters, intrauterine devices, voice prostheses, and prosthetic joints, resulting in the development of a biofilm. Many antimicrobial agents are now being used against microbial biofilms. However, inappropriate use of conventional antibiotic therapy may also contribute to inefficient biofilm control and to the dissemination of resistance. Consequently, new control strategies are constantly emerging to control biofilm-associated infections, such as the antifungal lock therapy, improved drug delivery, penetration of matrix-attacking extracellular polymetric substances, and regulation of biofilm inhibition/disruption by manipulating small molecules. The present chapter is focused on describing the clinical aspects of biofilm formation and deleterious effects associated with their presence. This chapter will highlight current and emergent control strategies for biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Sayem AM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M (2011) Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact 10:74

    CAS  Google Scholar 

  • Adonizio A, Kong KF, Mathee K (2008) Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 52:198–203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Agarwal V, Lal P, Pruthi V (2008) Prevention of Candida albicans biofilm by plant oils. Mycopathologia 165:13–19

    CAS  PubMed  Google Scholar 

  • Aguinaga A, Francés ML, Del Pozo JL, Alonso M, Serrera A, Lasa I, Leiva J (2011) Lysostaphin and clarithromycin: a promising combination for the eradication of Staphylococcus aureus biofilms. Int J Antimicrob Agents 37:585–587

    CAS  PubMed  Google Scholar 

  • Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, Shanahan F, Coffey A, Ross RP, Hill C (2012) Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. mBio 3:e00029-12

    PubMed Central  PubMed  Google Scholar 

  • Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. Acta Pathol Microbiol Immunol Scand 114:131–138

    CAS  Google Scholar 

  • Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anghel I, Grumezescu AM, Andronescu E, Anghel AG, Ficai A, Saviuc C, Grumezescu V, Vasile BS, Chifiriuc MC (2012) Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development. Nanoscale Res Lett 7:501

    PubMed Central  PubMed  Google Scholar 

  • Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2:2314–2321

    CAS  Google Scholar 

  • Arciola C (2009) New concepts and new weapons in implant infections. Int J Artif Organs 32:533–536

    PubMed  Google Scholar 

  • Bandara HMHN, Yau JYY, Watt RM, Jin LJ, Samaranayake LP (2010) Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development. BMC Microbiol 10:125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bauer WD, Robinson JB (2002) Disruption of bacterial quorum sensing by other organisms. Curr Opin Biotechnol 13:234–237

    CAS  PubMed  Google Scholar 

  • Bell M (2001) Biofilms: a clinical perspective. Curr Infect Dis Rep 3:483–486

    PubMed  Google Scholar 

  • Belyansky I, Tsirline VB, Martin TR, Klima DA, Heath J, Lincourt AE, Satishkumar R, Vertegel A, Heniford BT (2011) The addition of lysostaphin dramatically improves survival, protects porcine biomesh from infection, and improves graft tensile shear strength. J Surg Res 171:409–415

    CAS  PubMed  Google Scholar 

  • Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI (2010) Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci USA 107:22038–22043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biel MA, Sievert C, Usacheva M, Teichert M, Balcom J (2011a) Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms. Int Forum Allergy Rhinol 1:329–334

    PubMed Central  PubMed  Google Scholar 

  • Biel MA, Sievert C, Usacheva M, Teichert M, Wedell E, Loebel N, Rose A, Zimmermann R (2011b) Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy. Laser Surg Med 43:586–590

    Google Scholar 

  • Bjarnsholt T, Givskov M (2007) Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc B 362:1213–1222

    CAS  Google Scholar 

  • Brackman G, Celen S, Baruah K, Bossier P, Van Calenbergh S, Nelis HJ, Coenye T (2009) AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with LuxPQ. Microbiology 155:4114–4122

    CAS  PubMed  Google Scholar 

  • Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brogden KA, Guthmiller JM (2002) Polymicrobial diseases. ASM Press, Washington, DC

    Google Scholar 

  • Brook I (2002) Microbiology of polymicrobial abscesses and implications for therapy. J Antimicrob Chemother 50:805–810

    CAS  PubMed  Google Scholar 

  • Bruellhoff K, Fiedler J, Oller MM, Groll J, Brenner RE (2010) Surface coating strategies to prevent biofilm formation on implant surfaces. Int J Artif Organs 33:646–653

    CAS  PubMed  Google Scholar 

  • Brussow H (2012) Pseudomonas biofilms, cystic fibrosis, and phage: a silver lining? mBio 3:e00061-12. doi:10.1128/mBio.00061-12

    PubMed Central  PubMed  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    CAS  PubMed  Google Scholar 

  • Carlson RP, Taffs R, Davison WM, Stewart PS (2008) Anti-biofilm properties of chitosan-coated surfaces. J Biomat Sci 19:1035–1046

    CAS  Google Scholar 

  • Carratala J (2002) The antibiotic-lock technique for therapy of “highly needed” infected catheters. Clin Microbiol Infect 8:282–289

    CAS  PubMed  Google Scholar 

  • Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75:125–132

    CAS  PubMed  Google Scholar 

  • Chole R, Faddis B (2003) Anatomical evidence of microbial biofilms in tonsillar tissues, a possible mechanism to explain chronicity. Arch Otolaryngol Head Neck Surg 129:634–636

    PubMed  Google Scholar 

  • Christner M, Franke GC, Schommer NN et al (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75:187–207

    CAS  PubMed  Google Scholar 

  • Chuang YP, Fang CT, Lai SY, Chang SC, Wang JT (2006) Genetic determinants of capsular serotype K1 of Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 193:645–654

    CAS  PubMed  Google Scholar 

  • Coates T, Eady A, Cove J (2003) Propionibacterial biofilms cannot explain antibiotic resistance but might contribute to some cases of antibiotic recalcitrant acne. Br J Dermatol 148:366–367

    CAS  PubMed  Google Scholar 

  • Collins TL, Markus EA, Hassett DJ, Robinson JB (2010) The effect of a cationic porphyrin on Pseudomonas aeruginosa biofilms. Curr Microbiol 61:411–416

    CAS  PubMed  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    CAS  PubMed  Google Scholar 

  • Contreras-Garcia A, Bucio E, Brackmanc G, Coenye T, Concheiro A, Alvarez-Lorenzo C (2011) Biofilm inhibition and drug-eluting properties of novel DMAEMA-modified polyethylene and silicone rubber surfaces. Biofouling 27:123–135

    CAS  PubMed  Google Scholar 

  • Cornelissen A, Ceyssens PJ, T’Syen J, Van Praet H, Noben JP, Shaburova OV, Krylov VN, Volckaert G, Lavigne R (2011) The T7-related Pseudomonas putida phage Q15 displays virion-associated biofilm degradation properties. PLoS ONE 6:e18597. doi:10.1371/journal.pone.001 8597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    CAS  PubMed  Google Scholar 

  • Craigen B, Dashiff A, Kadouri DE (2011) The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J 5:21–31

    PubMed Central  PubMed  Google Scholar 

  • Dalleau S, Cateau E, Berges T, Berjeaud JM, Imbert C (2008) In vitro activity of terpenes against Candida biofilms. Int J Antimicrob Agents 31:572–576

    CAS  PubMed  Google Scholar 

  • Damte D, Gebru E, Lee SJ, Suh JW, Park SC (2013) Evaluation of anti-quorum sensing activity of 97 indigenous plant extracts from Korea through bioreporter bacterial strains Chromobacterium violaceum and Pseudomonas aeruginosa. J Microb Biochem Technol 5:42–46

    Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    CAS  PubMed  Google Scholar 

  • Davies DG, Marques CN (2009) A fatty acid is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies AN, Brailsford SR, Beighton D (2006) Oral candidosis in patients with advanced cancer. Oral Oncol 42:698–702

    PubMed  Google Scholar 

  • De Prijck K, Smet D, Coenye T, Schacht E, Nelis HJ (2010a) Prevention of Candida albicans biofilm formation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine. Mycopathologia 170:213–221

    CAS  PubMed  Google Scholar 

  • De Prijck K, Smet D, Rymarczyk-Machal M, Van Driessche G, Devreese B, Coenye T, Schacht E, Nelis HJ (2010b) Candida albicans biofilm formation on peptide functionalized polydimethylsiloxane. Biofouling 26:269–275

    PubMed  Google Scholar 

  • Dheilly A, Soum-Soutera E, Klein GL, Bazire A, Compère C, Haras D, Dufour A (2010) Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Appl Environ Microbiol 76:3452–3461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding X, Yin B, Qian L, Zeng Z, Yang Z, Li H, Lu Y, Zhou S (2011) Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J Med Microbiol 60:1827–1834

    CAS  PubMed  Google Scholar 

  • Dobrogosz WJ, Peacock TJ, Hassan HM, Allen I. Laskin SS, Geoffrey MG (2010) Evolution of the probiotic concept: from conception to validation and acceptance in medical science. Adv Appl Microbiol 72:1–41

    CAS  PubMed  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-sensing N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dongari-Bagtzoglou A (2008) Pathogenesis of mucosal biofilm infections: challenges and progress. Expert Rev Anti Infect Ther 6:201–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz P, Vasilakos J (2009) Characterization of mucosal Candida albicans biofilms. PLoS ONE. doi:10.1371/ journal.pone.0007967

    PubMed Central  PubMed  Google Scholar 

  • Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392

    CAS  PubMed  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881e890

    Google Scholar 

  • Donlan RM (2008) Biofilms on central venous catheters: is eradication possible? Curr Top Microbiol Immunol 322:133–161

    CAS  PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doolittle MM, Cooney JJ, Caldwell DE (1995) Lytic infection of Escherichia coli biofilms by bacteriophage-T4. Can J Microbiol 41:12–18

    CAS  PubMed  Google Scholar 

  • Douglas LJ (2002) Medical importance of biofilms in Candida infections. Rev Iberoam Micol 19:139–143

    PubMed  Google Scholar 

  • Fatima Q, Zahin M, Khan MSA, Ahmad I (2010) Modulation of quorum sensing controlled behaviour of bacteria by growing seedling, seed and seedling extracts of leguminous plants. Indian J Microbiol 50:238–242

    PubMed Central  PubMed  Google Scholar 

  • Fenton M, Keary R, McAuliffe O, Ross RP, O’Mahony J, Coffey A (2013) Bacteriophage-derived peptidase CHAPK eliminates and prevents staphylococcal biofilms. Int J Microbiol. Article ID 625341. doi:10.1155/2013/625341

  • Finch RG, Pritchard DI, Bycroft BW, Williams P, Stewart GS (1998) Quorum sensing: a novel target for anti-infective therapy. J Antimicrob Chemother 42:569–571

    CAS  PubMed  Google Scholar 

  • Fracchia L, Cavallo M, Allegrone G, Martinotti MG (2010) A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biochemistry. Formatex, Spain, pp 827–837

    Google Scholar 

  • Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–238

    CAS  PubMed  Google Scholar 

  • Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW (2003) Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther 1:667–683

    PubMed  Google Scholar 

  • Geske GD, Wezeman RJ, Siegel AP, Blackwell HE (2005) Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 127:12762–12763

    CAS  PubMed  Google Scholar 

  • Geske GD, O’Neill JC, Blackwell HE (2008) Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chem Soc Rev 37:1432–1447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giacometti A, Cirioni O, Gov Y, Ghiselli R, Del Prete MS, Mocchegiani F, Saba V, Orlando F, Scalise G, Balaban N, Dell’Acqua G (2003) RNA III inhibiting peptide inhibits in vivo biofilm formation by drug-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:1979–1983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glansdorp FG, Thomas GL, Lee JJ, Dutton JM, Salmond GP, Welch M, Spring DR (2004) Synthesis and stability of small molecule probes for Pseudomonas aeruginosa quorum sensing modulation. Org Biomol Chem 2:3329–3336

    CAS  PubMed  Google Scholar 

  • Gonzales FP, Felgentrager A, BaumLer W, Maisch T (2013) Fungicidal photodynamic effect of two fold positively charged porphyrin against Candida albicans planktonic cells and biofilms. Future Microbiol 8:785–797

    CAS  PubMed  Google Scholar 

  • Gottenbos B, van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ (2001) In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23:1417–1423

    Google Scholar 

  • Gupta VGR (2009) Probiotics. Indian J Med Microbiol 27:202–209

    CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043

    CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95e108

    Google Scholar 

  • Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harjai K, Kumar R, Singh S (2010) Garlic blocks quorum sensing and attenuates the virulence of Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 58:161–168

    CAS  PubMed  Google Scholar 

  • Harriott MM, Noverr MC (2009) Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 53:3914–3922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harriott MM, Noverr MC (2010) Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrob Agents Chemother 54:3746–3755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hasan F, Xess I, Wang X, Jain N, Fries BC (2009) Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect 11:753–761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hashimoto H (2001) Evaluation of the anti-biofilm effect of a new antibacterial silver citrate/lecithin coating in an in-vitro experimental system using a modified Robbins device. J Jpn Assoc Infect Dis 75:678–685

    CAS  Google Scholar 

  • Hendry ER, Worthington T, Conway BR, Lambert PA (2009) Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother 64:1219–1225

    CAS  PubMed  Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomed 7:2109–2113

    CAS  Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Nino K, Garza-Enriquez M, Garza-Ramos MAD, Cabral-Romero C (2013a) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomed 7:2109–2113

    Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Nino K, Garza-Enriquez M, Garza-Ramos MAD, Cabral-Romero C (2013b) Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomed 8:1645–1652

    Google Scholar 

  • Hockenhull JC, Dwan KM, Smith GW, Gamble CL, Boland A, Walley TJ, Dickson RC (2009) The clinical effectiveness of central venous catheters treated with anti infective agents in preventing catheter-related bloodstream infections: a systematic review. Crit Care Med 37:702–712

    CAS  PubMed  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    PubMed  Google Scholar 

  • Il’ina TS, Romanova YM, Gintsburg AL (2004) Biofilms as a mode of existence of bacteria in external environment and host body: the phenomenon, genetic control, and regulation systems of development. Genetika 40:1445–1456

    PubMed  Google Scholar 

  • Issac Abraham SV, Palani A, Ramaswamy BR, Shunmugiah KP, Arumugam VR (2011) Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch Med Res 42:658–668

    PubMed  Google Scholar 

  • Itoh Y, Wang X, Hinnebusch BJ, Preston JF III, Romeo T (2005) Depolymerization of β-1, 6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–351

    CAS  PubMed  Google Scholar 

  • Jabra-Rizk MA, Meiller TF, James C, Shirtliff ME (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50:1463–1469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jain AGY, Agrawal R, Khare P, Jain SK (2007) Biofilms a microbial life perspective: a critical review. Crit Rev Ther Drug Carrier Syst 24:393–443

    CAS  PubMed  Google Scholar 

  • Janek T, Łukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayaraman A, Wood TK (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10:145–167

    CAS  PubMed  Google Scholar 

  • Jiang P, Li J, Han F, Duan G, Lu X, Gu Y, Yu W (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS ONE 6:e18514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Junker LM, Clardy J (2007) High-throughput screens for small-molecule inhibitors of Pseudomonas aeruginosa biofilm development. Antimicrob Agents Chemother 51:3582–3590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalishwaralal K, BarathManiKanth S, Pandian SR, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces 79:340–344

    CAS  PubMed  Google Scholar 

  • Kaplan JB (2009) Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs 32:545–554

    CAS  PubMed  Google Scholar 

  • Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications and potential therapeutic uses. J Dent Res 89:205–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karlsson AJ, Pomerantz WC, Neilsen KJ, Gellman SH, Palecek SP (2009) Effect of sequence and structural properties on 14-helical betapeptide activity against Candida albicans planktonic cells and biofilms. ACS Chem Biol 4:567–579

    CAS  PubMed  Google Scholar 

  • Karlsson AJ, Flessner RM, Gellman SH, Lynn DM, Palecek SP (2010) Polyelectrolyte multilayers fabricated from antifungal β-peptides: design of surfaces that exhibit antifungal activity against Candida albicans. Biomacromolecules 11:2321–2328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan MSA, Ahmad I (2012a) Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J Ethnopharmacol 140:416–423

    CAS  PubMed  Google Scholar 

  • Khan MSA, Ahmad I (2012b) Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 67:618–621

    CAS  PubMed  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    CAS  PubMed  Google Scholar 

  • Kishen A, Upadya M, Tegos GP, Hamblin MR (2010) Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem Photobiol 86:1343–1349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiran GS, Sabarathnam B, Selvin J (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol 59:432–438

    CAS  PubMed  Google Scholar 

  • Kiran S, Sharma P, Harjai K, Capalash N (2011) Enzymatic quorum quenching increases antibiotic susceptibility of multidrug resistant Pseudomonas aeruginosa. Iran J Microbiol 3:1–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knowles JR, Roller S, Murray DB, Naidu AS (2005) Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica Serovar Typhimurium. Appl Environ Microbiol 71:797–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biolfilm: importance and applications. Indian J Biotechnol 8:159–168

    CAS  Google Scholar 

  • Konopka K, Dorocka-Bobkowska B, Gebremedhin S, Duzguneş N (2010) Susceptibility of Candida biofilms to histatin 5 and fluconazole. Antonie Van Leeuwenhoek 97:413–417

    CAS  PubMed  Google Scholar 

  • Ku TSN, Palanisamy SKA, Lee SA (2010) Susceptibility of Candida albicans biofilms to azithromycin, tigecycline and vancomycin and the interaction between tigecycline and antifungals. Int J Antimicrob Agents 36:441–446

    CAS  PubMed  Google Scholar 

  • Kudva IT, Jelacic S, Tarr PI, Youderian P, Hovde CJ (1999) Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl Environ Microbiol 65:3767–3773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuramitsu HK, He X, Lux R, Anderson MH, Shi W (2007) Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzma L, Ozalski MR, Walencka E, Ozalska BR, Wysokinska H (2007) Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 14:31–35

    CAS  PubMed  Google Scholar 

  • Lazar V (2011) Quorum sensing in biofilms: how to destroy the bacterial citadels or their cohesion/power? Anaerobe 17:280e285

    Google Scholar 

  • Lazzell AL, Chaturvedi AK, Pierce CG, Prasad D, Uppuluri P, Lopez-Ribot JL (2009) Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous cathetermurine model of candidiasis. J Antimicrob Chemother 64:567–570

    CAS  PubMed  Google Scholar 

  • Lee J, Jayaraman A, Wood TK (2007) Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:42

    PubMed Central  PubMed  Google Scholar 

  • Lewis K (2005) Persister cells and the riddle of biofilm survival. Biokhimiya 70:327–336

    Google Scholar 

  • Lonn-Stensrud J, Landin MA, Benneche T, Petersen FC, Scheie AA (2009) Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections? J Antimicrob Chemother 63:309–331

    CAS  PubMed  Google Scholar 

  • Mardh PA, Rodrigues AG, Genc M, Novikova N, Martinez-de-Oliveira J, Guaschino S (2002) Facts and myths on recurrent vulvovaginal candidosis—a review on epidemiology, clinical manifestations, diagnosis, pathogenesis and therapy. Int J STD AIDS 13:522–539

    PubMed  Google Scholar 

  • Martinez LR, Mihu MR, Tar M, Cordero RJ, Han G, Friedman AJ, Friedman JM, Nosanchuk JD (2010) Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. J Infect Dis 201:1436–1440

    CAS  PubMed  Google Scholar 

  • Martins M, Henriques M, Lopez-Ribot JL, Oliveira R (2012) Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55:80–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matejuk A, Leng Q, Begum MD, Woodle MC, Scaria P, Chou ST, Mixson AJ (2010) Peptide-based antifungal therapies against emerging infections. Drugs Future 35:197–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meire MA, Coenye T, Nelis HJ, De Moor RC (2012) Evaluation of Nd:YAG and Er:YAG irradiation, antibacterial photodynamic therapy and sodium hypochlorite treatment on Enterococcus faecalis biofilms. Int Endod J 45:482–491

    CAS  PubMed  Google Scholar 

  • Mermel LA, Allon M, DE Bouza C, Flynn P, O’Grady NP, Raad II, Rijnders BJ, Sherertz RJ, Warren DK (2009) Clinical practice guidelines for the diagnosis andmanagement of intravascular catheter-related infection: 2009 update by the infectious diseases society of America. Clin Infect Dis 49:1–45

    CAS  PubMed  Google Scholar 

  • Miceli MH, Bernardo SM, Lee SA (2009) In vitro analyses of the combination of high-dose doxycycline and antifungal agents against Candida albicans biofilms. Int J Antimicrob Agents 34:326–332

    CAS  PubMed  Google Scholar 

  • Mireles JR, Toguchi A, Harshey RM (2001) Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molin S, Tolker-Nielson T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    CAS  PubMed  Google Scholar 

  • Monteiro AS, Miranda TT, Lula I, Denadai AML, Sinisterra RD, Santoro MM, Santos VL (2011a) Inhibition of Candida albicans CC biofilms formation in polystyrene plate surfaces by biosurfactant produced by Trichosporon montevideense CLOA72. Colloids Surf B Biointerfaces 84:467–476

    CAS  PubMed  Google Scholar 

  • Monteiro DR, Gorup LF, Silva S, Negri M, de Camargo ER, Oliveira R, Barbosa DB, Henriques M (2011b) Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling 27:711–719

    CAS  PubMed  Google Scholar 

  • Muller FM, Seidler M, Beauvais A (2011) Aspergillus fumigatus biofilms in the clinical setting. Med Mycol 49(Suppl 1):S96–S100

    PubMed  Google Scholar 

  • Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12:789–796

    CAS  PubMed  Google Scholar 

  • Musthafa KS, Saroja V, Pandian SK, Ravi AV (2011) Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactonemediated virulence factors production in Pseudomonas aeruginosa (PAO1). J Biosci 36:55–67

    CAS  PubMed  Google Scholar 

  • Namasivayam SKR, Preethi M, Bharani ARS, Robin G, Latha B (2012) Biofilm inhibitory effect of silver nanoparticles coated catheter against Staphylococcus aureus and evaluation of its synergistic effects with antibiotics. Int J Biol Pharm Res 3:259–265

    Google Scholar 

  • Nava-Ortiz CAB, Burillo G, Concheiro A et al (2010) Cyclodextrin-functionalized biomaterials loaded with miconazole prevent Candida albicans biofilm formation in vitro. Acta Biomater 6:1398–1404

    CAS  PubMed  Google Scholar 

  • Nikolaev YA, Plankunov VK (2007) Biofilm- “city of microbes” or an analogue of multicellular organisms? Microbiology 76:125–138

    CAS  Google Scholar 

  • Nithyanand P, Thenmozhi R, Rathna J, Pandian SK (2010) Inhibition of biofilm formation in Streptococcus pyogenes by coral associated Actinomycetes. Curr Microbiol 60:454–460

    CAS  PubMed  Google Scholar 

  • Niu C, Gilbert ES (2004) Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 70:6951–6956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Njoroge J, Sperandio V (2009) Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med 1:201–210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523

    CAS  PubMed  Google Scholar 

  • Oosterhof JJH, Buijssen KJDA, Busscher HJ, van der Laan BFAM, van der Mei HC (2006) Effects of quaternary ammonium silane coatings on mixed fungal and bacterial biofilms on tracheoesophageal shunt prostheses. Appl Environ Microbiol 72:3673–3677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Padmapriya B, Suganthi S (2013) Antimicrobial and anti adhesive activity of purified biosurfactants produced by Candida species. Middle East J Sci Res 14:1359–1369

    Google Scholar 

  • Peters BM, Jabra-Rizk MA, Scheper MA, Leid JG, Costerton JW, Shirtliff ME (2010) Microbial interactions and differential protein expression in Staphylococcus aureusCandida albicans dual-species biofilms. FEMS Immunol Med Microbiol 59:493–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prince AS (2002) Biofilms, antimicrobial resistance, and airway infection. N Engl J Med 347:1110–1111

    PubMed  Google Scholar 

  • Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    CAS  PubMed  Google Scholar 

  • Radford DR, Sweet SP, Challacombe SJ, Walter JD (1998) Adherence of Candida albicans to denture-base materials with different surface finishes. J Dent 26:577–583

    CAS  PubMed  Google Scholar 

  • Raffa RB, Iannuzzo JR, Levine DR, Saeid KK, Schwartz RC, Sucic NT, Terleckyj OD, Jeffrey M (2005) Young bacterial communication (“Quorum Sensing”) via ligands and receptors: a novel pharmacologic target for the design of antibiotic drugs. J Pharmacol Exp Ther 312:417–423

    CAS  PubMed  Google Scholar 

  • Ramage G, Saville DO, Lopez-Ribot JL (2005) Candida biofilm: an update. Eukaryot Cell 4:633–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904

    CAS  PubMed  Google Scholar 

  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340

    CAS  PubMed  Google Scholar 

  • Ravichandiran V, Shanmugam K, Anupama K, Fomas S, Princy A (2012) Structure-based virtual screening for plant-derived SdiA-selective ligands as potential antivirulent agents against uropathogenic Escherichia coli. Eur J Med Chem 48:200–205

    CAS  PubMed  Google Scholar 

  • Redding S, Bhatt HR, Rawls G, Siegel K, Scott Lopez-Ribot J (2009) Inhibition of Candida albicans biofilm formation on denture material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:669–672

    PubMed  Google Scholar 

  • Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK (2004) Stationary-phase quorum-sensing signals affect autoinducer-2 and gene expression in Escherichia coli. Appl Environ Microbiol 70:2038–2043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren DC, Zuo RJ, Barrios AF, Bedzyk LA, Eldridge GR, Pasmore ME, Wood TK (2005) Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol 71:4022–4034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Repentigny D, Lewandowski D, Jolicoeur P (2004) Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev 17:729–759

    PubMed Central  PubMed  Google Scholar 

  • Ribeiro APD, Andrade MC, Bagnato VS, Vergani CE, Primo FL, Tedesco AC, Pavarina AC (2013) Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions. Lasers Med Sci. doi:10.1007/s10103-013-1354-x

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553

    CAS  PubMed  Google Scholar 

  • Rodrigues LR, van der Mei HC, Teixeira JA, Oliveira R (2004) Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl Microbiol Biotechnol 66:306–311

    CAS  PubMed  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    CAS  PubMed  Google Scholar 

  • Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdlski C, Wurster S, Scherpe S, Davies AP, Harris LG, Horstkotte MA, Knobloch JKM, Ragunath C, Kaplan JB, Mack D (2007) Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–1720

    CAS  PubMed  Google Scholar 

  • Rossland E, Langsrud T, Granum PE, Sorhaug T (2005) Production of antimicrobial metabolites by strains of Lactobacillus or Lactococcus co-cultured with Bacillus cereus in milk. Int J Food Microbiol 98:193–200

    CAS  PubMed  Google Scholar 

  • Rufino RD, Luna JM, Sarubbo LA, Rodrigues LRM, Teixeira JAC, Campos-Takaki GM (2011) Antimicrobial and anti-adhesive potential of a biosurfactant rufisan produced by Candida lipolytica UCP0988. Colloids Surf B Biointerfaces 84:1–5

    CAS  PubMed  Google Scholar 

  • Rukayadi Y, Han S, Yong D, Hwang JK (2011) In vitro activity of xanthorrhizol against Candida glabrata, C. guilliermondii, and C. parapsilosis biofilms. Med Mycol 49:1–9

    CAS  PubMed  Google Scholar 

  • Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. Bacteriology 187:1792–1798

    CAS  Google Scholar 

  • Sachachter B (2003) Slimy business-the biotechnology of biofilms. Nat Biotechnol 21:361–365

    Google Scholar 

  • Saino E, Sbarra MS, Arciola CR, Scavone M, Bloise N, Nikolov P, Ricchelli F, Visai L (2010) Photodynamic action of Tri-meso (N-methyl-pyridyl), meso (N-tetradecyl-pyridyl) porphine on Staphylococcus epidermidis biofilms grown on Ti6Al4V alloy. Int J Artif Organs 33:636–645

    CAS  PubMed  Google Scholar 

  • Sambanthamoorthy K, Gokhale AA, Lao W, Parashar V, Neiditch MB, Semmelhack MF, Lee I, Waters CM (2011) Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob Agents Chemother 55:4369–4378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarabhai S, Sharma P, Capalash N (2013) Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS ONE 8:e53441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schinabeck MK, Long LA, Hossain MA, Chandra J, Mukherjee PK, Mohamed S, Ghannoum MA (2004) Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 48:1727–1732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Secinti KD, Ozalp H, Attar A, Sargon MF (2011) Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. J Clin Neurosci 18:391–395

    CAS  PubMed  Google Scholar 

  • Shen Y, Koller T, Kreikemeyer B, Nelson DC (2013) Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J Antimicrob Chemother. doi:10.1093/jac/dkt104

    Google Scholar 

  • Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA (2009) Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother 53:392–2401

    Google Scholar 

  • Sillankorva S, Oliveira DR, Vieira MJ, Sutherland IW, Azeredo J (2004) Bacteriophage V S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling 20:133–138

    PubMed  Google Scholar 

  • Sillankorva S, Neubauer P, Azeredo J (2010) Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling 26:567–575

    PubMed  Google Scholar 

  • Simoes M, Sillankorva S, Pereira MO, Azeredo J, Vieira MJ (2007) The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms. Biofouling 24:249–258

    Google Scholar 

  • Singh P, Cameotra S (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    CAS  PubMed  Google Scholar 

  • Singh N, Pemmaraju SC, Pruthi PA, Cameotra SS, Pruthi V (2013) Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Appl Biochem Biotechnol 169:2374–2391

    CAS  PubMed  Google Scholar 

  • Sintim HO, Smith JA, Wang J, Nakayama S, Yan L (2010) Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med Chem 2:1005–1035

    CAS  PubMed  Google Scholar 

  • Smith AW (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems. Adv Drug Deliv Rev 57:1539–1550

    CAS  PubMed  Google Scholar 

  • Smith KM, Bu YG, Suga H (2003a) Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol 10:563–571

    CAS  PubMed  Google Scholar 

  • Smith KM, Bu YG, Suga H (2003b) Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol 10:81–89

    CAS  PubMed  Google Scholar 

  • Soderling EM, Marttinen AM, Haukioja AL (2011) Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro. Curr Microbiol 62:618–622

    PubMed  Google Scholar 

  • Splendiani A, Livingston AG, Nicolella C (2006) Control membrane-attached biofilms using surfactants. Biotechnol Bioeng 94:15–23

    CAS  PubMed  Google Scholar 

  • Stark M, Liu LP, Deber CM (2002) Cationic hydrophobic peptides with antimicrobial activity. Antimicrob Agents Chemother 46:3585–3590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart PS (2003) New ways to stop biofilm infections. Lancet 361:97

    PubMed  Google Scholar 

  • Suzuki N, Yoneda M, Hatano Y, Iwamoto T, Masuo Y, Hirofuji T (2011) Enterococcus faecium WB2000 inhibits biofilm formation by oral cariogenic Streptococci. Int J Dent. doi:10.1155/2011/834151

    Google Scholar 

  • Tahmourespour A, Kermanshahi RK (2011) The effect of a probiotic strain (Lactobacillus acidophilus) on the plaque formation of oral Streptococci. Bosn J Basic Med Sci 11:37–40

    PubMed  Google Scholar 

  • Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028

    CAS  PubMed  Google Scholar 

  • Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J (2013) Innovative strategies to overcome biofilm resistance. Bio Med Res Int. doi:10.1155/2013/150653

    Google Scholar 

  • Taweechaisupapong S, Singhara S, Lertsatitthanakorn P, Khunkitti W (2010) Antimicrobial effects of Boesenbergia pandurata and Piper sarmentosum leaf extracts on planktonic cells and biofilm of oral pathogens. Pak J Pharm Sci 23:224–231

    CAS  PubMed  Google Scholar 

  • Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53:1204–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teughels W, Van Assche N, Sliepen I, Quirynen M (2006) Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 17:68–81

    PubMed  Google Scholar 

  • Tew GN, Liu D, Chen B, Doerksen RJ, Kaplan J, Carroll PJ, Klein ML, DeGrado WF (2002) De novo design of biomimetic antimicrobial polymers. Proc Natl Acad Sci USA 99:5110–5114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thaweboon S, Thaweboon B (2009) In vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms. Southeast Asian J Trop Med Public Health 40:1025–1033

    PubMed  Google Scholar 

  • Thenmozhi R, Nithyanand P, Rathna J, Pandian SK (2009) Antibiofilm activity of coral associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 57:284–294

    CAS  PubMed  Google Scholar 

  • Toulet D, Debarre C, Imbert C (2012) Could liposomal amphotericin B (L-AMB) lock solutions be useful to inhibit Candida spp. biofilms on silicone biomaterials? J Antimicrob Chemother 67:430–432

    CAS  PubMed  Google Scholar 

  • Tournu H, Dijck PV (2012) Candida biofilms and the host: models and new concepts for eradication. Int J Microbiol. doi:10.1155/2012/845352

    PubMed Central  PubMed  Google Scholar 

  • Trampuz A, Widmer AF (2006) Infections associated with orthopedic implants. Curr Opin Infect Dis 19:349–356

    CAS  PubMed  Google Scholar 

  • Tsai PW, Yang CY, Chang HT, Lan CY (2011) Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS ONE 6:e17755. doi:10.1371/journal.pone.0017755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valle J, Re DS, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo JM (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci USA 103:12558–12563

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Hamme JD, Singh A, Ward OP (2006) Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    PubMed  Google Scholar 

  • Venkatesh M, Rong L, Raad I, Versalovic J (2009) Novel synergistic antibiofilm combinations for salvage of infected catheters. J Med Microbiol 58:936–944

    CAS  PubMed  Google Scholar 

  • Villa F, Cappitelli F (2013) Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochem Rev 12:245–254

    CAS  Google Scholar 

  • Wainwright M (2003) The use of dyes in modern biomedicine. Biotech Histochem 78:147–155

    CAS  PubMed  Google Scholar 

  • Walencka E, Sadowska B, Rozalska S, Hryniewicz W, Rozalska B (2005) Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication. Pol J Microbiol 54:191–200

    CAS  PubMed  Google Scholar 

  • Walencka E, Rozalska S, Sadowska B, Rozalska B (2008) The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol 53:61–66

    CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Weiss EI, Lev-Dor R, Kashamn Y, Goldhar J, Sharon N, Ofek I (1998) Inhibiting interspecies coaggregation of plaque bacteria with a craneberry juice constituent. J Am Dent Assoc 129:1719–1723

    CAS  PubMed  Google Scholar 

  • Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762

    PubMed  Google Scholar 

  • Wilson M (2001) Bacterial biofilms and human disease. Sci Prog 84:235–254

    CAS  PubMed  Google Scholar 

  • Worthington RJ, Justin J, Richards MC (2012) Small molecule control of bacterial biofilms. Org Biomol Chem 10:7457–7474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wuertz SOS, Hausner M (2004) Microbial communities and their interactions in biofilm systems: an overview. Water Sci Technol 49:327–336

    CAS  PubMed  Google Scholar 

  • Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MCM, Stewart PS (2005) Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix: a modelling study. Microbiology 151:3817–3832

    CAS  PubMed  Google Scholar 

  • Xiong Y, Liu Y (2010) Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl Microbiol Biotechnol 86:825–837

    CAS  PubMed  Google Scholar 

  • Yan H, Chen W (2010) 3′,5′-cyclic diguanylic acid: a small nucleotide that makes big impacts. Chem Soc Rev 39:2914–2924

    CAS  PubMed  Google Scholar 

  • Yang L, Rybtke MT, Jakobsen TH, Hentzer M, Bjarnsholt T, Givskov M, Tolker-Nielsen T (2009) Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother 53:2432–2443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zumbuehl A, Ferreira L, Kuhn D, Astashkina A, Long L, Yeo Y, Iaconis T, Ghannoum M, Fink GR, Langer R, Kohane DS (2007) Antifungal hydrogels. Proc Natl Acad Sci USA 104:12994–12998

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank University Grants Commission, and Indian Council of Medical Research, New Delhi for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Sajjad Ahmad Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khan, M.S.A., Ahmad, I., Sajid, M., Cameotra, S.S. (2014). Current and Emergent Control Strategies for Medical Biofilms. In: Rumbaugh, K., Ahmad, I. (eds) Antibiofilm Agents. Springer Series on Biofilms, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53833-9_7

Download citation

Publish with us

Policies and ethics