The Role of Quorum Sensing in Biofilm Development

Part of the Springer Series on Biofilms book series (BIOFILMS, volume 8)


Quorum-sensing (QS) systems have been discovered in over 100 microbial species, many of which use these cell-to-cell signaling mechanisms for the coordinated production of biofilms. While our understanding of QS dynamics in laboratory culture conditions has dramatically expanded over the last few decades, we still understand very little about how these systems govern bacterial behavior in complex, natural settings. What we do know is that QS can influence every stage of biofilm formation; however, this influence is dependent on the microorganism and the type of QS system it employs. Furthermore, QS can both positively and negatively regulate biofilm formation in different environmental conditions. Investigations of QS in situ have been hampered by a lack of experimental tools; however, innovative new strategies are being developed that should help shed light on the involvement of QS in complex, polymicrobial biofilms. While developing agents that modulate QS to control microbial biofilm formation has faced significant hurdles, there are some promising agents in development and a more complete understanding of the role QS plays in biofilm formation should help drive future advances.


  1. Atkinson S, Goldstone RJ, Joshua GW, Chang CY, Patrick HL, Camara M, Wren BW, Williams P (2011) Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion. PLoS Pathog 7:e1001250PubMedCentralPubMedCrossRefGoogle Scholar
  2. Auger S, Krin E, Aymerich S, Gohar M (2006) Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl Environ Microbiol 72:937–941PubMedCentralPubMedCrossRefGoogle Scholar
  3. Balestrino D, Haagensen JA, Rich C, Forestier C (2005) Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol 187:2870–2880PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bamford CV, D’mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF (2009) Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 77:3696–3704PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587PubMedCrossRefGoogle Scholar
  6. Blehert DS, Palmer RJ Jr, Xavier JB, Almeida JS, Kolenbrander PE (2003) Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J Bacteriol 185:4851–4860PubMedCentralPubMedCrossRefGoogle Scholar
  7. Boon C, Deng Y, Wang LH, He Y, Xu JL, Fan Y, Pan SQ, Zhang LH (2008) A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36PubMedCrossRefGoogle Scholar
  8. Cao JG, Meighen EA (1989) Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J Biol Chem 264:21670–21676PubMedGoogle Scholar
  9. Challan Belval S, Gal L, Margiewes S, Garmyn D, Piveteau P, Guzzo J (2006) Assessment of the roles of LuxS, S-ribosyl homocysteine, and autoinducer 2 in cell attachment during biofilm formation by Listeria monocytogenes EGD-e. Appl Environ Microbiol 72:2644–2650PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cole SP, Harwood J, Lee R, She R, Guiney DG (2004) Characterization of monospecies biofilm formation by Helicobacter pylori. J Bacteriol 186:3124–3132PubMedCentralPubMedCrossRefGoogle Scholar
  11. Connell JL, Wessel AK, Parsek MR, Ellington AD, Whiteley M, Shear JB (2010) Probing prokaryotic social behaviors with bacterial “lobster traps”. MBio 1Google Scholar
  12. Connell JL, Ritschdorff ET, Whiteley M, Shear JB (2013) 3D printing of microscopic bacterial communities. Proc Natl Acad Sci USA 110:18380–18385PubMedCrossRefGoogle Scholar
  13. Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433PubMedCentralPubMedGoogle Scholar
  14. Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403PubMedCentralPubMedCrossRefGoogle Scholar
  15. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm [see comments]. Science 280:295–298PubMedCrossRefGoogle Scholar
  16. de Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11:279–288PubMedCrossRefGoogle Scholar
  17. de Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873PubMedCentralPubMedCrossRefGoogle Scholar
  18. Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000PubMedCentralPubMedCrossRefGoogle Scholar
  19. Frommberger M, Schmitt-Kopplin P, Menzinger F, Albrecht V, Schmid M, Eberl L, Hartmann A, Kettrup A (2003) Analysis of N-acyl-L-homoserine lactones produced by Burkholderia cepacia with partial filling micellar electrokinetic chromatography–electrospray ionization-ion trap mass spectrometry. Electrophoresis 24:3067–3074PubMedCrossRefGoogle Scholar
  20. Gao M, Coggin A, Yagnik K, Teplitski M (2012) Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies. PLoS One 7:e42611PubMedCentralPubMedCrossRefGoogle Scholar
  21. Garcia-Aljaro C, Melado-Rovira S, Milton DL, Blanch AR (2012) Quorum-sensing regulates biofilm formation in Vibrio scophthalmi. BMC Microbiol 12:287PubMedCentralPubMedCrossRefGoogle Scholar
  22. Garcia-Contreras R, Maeda T, Wood TK (2013) Resistance to quorum-quenching compounds. Appl Environ Microbiol 79:6840–6846PubMedCentralPubMedCrossRefGoogle Scholar
  23. Givskov M, DE Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622PubMedCentralPubMedGoogle Scholar
  24. Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–104PubMedCrossRefGoogle Scholar
  25. Haruta S, Kato S, Yamamoto K, Igarashi Y (2009) Intertwined interspecies relationships: approaches to untangle the microbial network. Environ Microbiol 11:2963–2969PubMedCrossRefGoogle Scholar
  26. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223PubMedCrossRefGoogle Scholar
  28. Hsueh YH, Somers EB, Lereclus D, Wong AC (2006) Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator. Appl Environ Microbiol 72:5089–5092PubMedCentralPubMedCrossRefGoogle Scholar
  29. Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528PubMedGoogle Scholar
  30. Huber B, Riedel K, Kothe M, Givskov M, Molin S, Eberl L (2002) Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol Microbiol 46:411–426PubMedCrossRefGoogle Scholar
  31. Jarosz LM, Deng DM, van der Mei HC, Crielaard W, Krom BP (2009) Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot Cell 8:1658–1664PubMedCentralPubMedCrossRefGoogle Scholar
  32. Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, Deleo FR, Hinnebusch BJ (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190:783–792PubMedCrossRefGoogle Scholar
  33. Koutsoudis MD, Tsaltas D, Minogue TD, Von Bodman SB (2006) Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci USA 103:5983–5988PubMedCentralPubMedCrossRefGoogle Scholar
  34. Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186:692–698PubMedCentralPubMedCrossRefGoogle Scholar
  35. Labbate M, Zhu H, Thung L, Bandara R, Larsen MR, Willcox MD, Givskov M, Rice SA, Kjelleberg S (2007) Quorum-sensing regulation of adhesion in Serratia marcescens MG1 is surface dependent. J Bacteriol 189:2702–2711PubMedCentralPubMedCrossRefGoogle Scholar
  36. Lasarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lepine F, Deziel E (2011) Liquid chromatography/mass spectrometry for the detection and quantification of N-acyl-L-homoserine lactones and 4-hydroxy-2-alkylquinolines. Methods Mol Biol 692:61–69PubMedCrossRefGoogle Scholar
  38. Luo X, Wu HC, Tsao CY, Cheng Y, Betz J, Payne GF, Rubloff GW, Bentley WE (2012) Biofabrication of stratified biofilm mimics for observation and control of bacterial signaling. Biomaterials 33:5136–5143PubMedCrossRefGoogle Scholar
  39. Lynch MJ, Swift S, Kirke DF, Keevil CW, Dodd CE, Williams P (2002) The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 4:18–28PubMedCrossRefGoogle Scholar
  40. Mack D, Davies AP, Harris LG, Rohde H, Horstkotte MA, Knobloch JK (2007) Microbial interactions in Staphylococcus epidermidis biofilms. Anal Bioanal Chem 387:399–408PubMedCrossRefGoogle Scholar
  41. Mcdougald D, Rice SA, Kjelleberg S (2001) SmcR-dependent regulation of adaptive phenotypes in Vibrio vulnificus. J Bacteriol 183:758–762PubMedCentralPubMedCrossRefGoogle Scholar
  42. Mcdougald D, LIN WH, Rice SA, Kjelleberg S (2006) The role of quorum sensing and the effect of environmental conditions on biofilm formation by strains of Vibrio vulnificus. Biofouling 22:133–144PubMedCrossRefGoogle Scholar
  43. Mcnab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284PubMedCentralPubMedCrossRefGoogle Scholar
  44. Merritt J, Qi F, Goodman SD, Anderson MH, Shi W (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979PubMedCentralPubMedCrossRefGoogle Scholar
  45. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefGoogle Scholar
  46. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564PubMedCrossRefGoogle Scholar
  47. O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA 110:17981–17986PubMedCentralPubMedCrossRefGoogle Scholar
  48. Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64:175–188PubMedCrossRefGoogle Scholar
  49. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33PubMedCrossRefGoogle Scholar
  50. Pearman WF, Lawrence-Snyder M, Angel SM, Decho AW (2007) Surface-enhanced Raman spectroscopy for in situ measurements of signaling molecules (autoinducers) relevant to bacteria quorum sensing. Appl Spectrosc 61:1295–1300PubMedCrossRefGoogle Scholar
  51. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767PubMedCentralPubMedGoogle Scholar
  52. Puskas A, Greenberg EP, Kaplan S, Schaefer AL (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537PubMedCentralPubMedGoogle Scholar
  53. Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463PubMedCentralPubMedCrossRefGoogle Scholar
  54. Ravn L, Christensen AB, Molin S, Givskov M, Gram L (2001) Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods 44:239–251PubMedCrossRefGoogle Scholar
  55. Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA (2007) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73:1908–1913PubMedCentralPubMedCrossRefGoogle Scholar
  56. Rieu A, Weidmann S, Garmyn D, Piveteau P, Guzzo J (2007) Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern. Appl Environ Microbiol 73:6125–6133PubMedCentralPubMedCrossRefGoogle Scholar
  57. Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, Tolker-Nielsen T, Dow JM (2008) Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol 68:75–86PubMedCrossRefGoogle Scholar
  58. Schaefer AL, Hanzelka BL, Parsek MR, Greenberg EP (2000) Detection, purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods Enzymol 305:288–301PubMedCrossRefGoogle Scholar
  59. Slater H, Alvarez-Morales A, Barber CE, Daniels MJ, Dow JM (2000) A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38:986–1003PubMedCrossRefGoogle Scholar
  60. Sorroche FG, Rinaudi LV, Zorreguieta A, Giordano W (2010) EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells. Curr Microbiol 61:465–470PubMedCrossRefGoogle Scholar
  61. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209PubMedCrossRefGoogle Scholar
  62. Sturme MH, Nakayama J, Molenaar D, Murakami Y, Kunugi R, Fujii T, Vaughan EE, Kleerebezem M, DE Vos WM (2005) An agr-like two-component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacteriol 187:5224–5235PubMedCentralPubMedCrossRefGoogle Scholar
  63. Taga ME, Semmelhack JL, Bassler BL (2001) The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol 42:777–793PubMedCrossRefGoogle Scholar
  64. Tomlin KL, Malott RJ, Ramage G, Storey DG, Sokol PA, CERI H (2005) Quorum-sensing mutations affect attachment and stability of Burkholderia cenocepacia biofilms. Appl Environ Microbiol 71:5208–5218PubMedCentralPubMedCrossRefGoogle Scholar
  65. Vidal JE, Ludewick HP, Kunkel RM, Zahner D, Klugman KP (2011) The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect Immun 79:4050–4060PubMedCentralPubMedCrossRefGoogle Scholar
  66. Vilchez R, Lemme A, Ballhausen B, Thiel V, Schulz S, Jansen R, Sztajer H, Wagner-Dobler I (2010) Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF). Chembiochem 11:1552–1562PubMedCrossRefGoogle Scholar
  67. von Bodman SB, Majerczak DR, Coplin DL (1998) A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci USA 95:7687–7692CrossRefGoogle Scholar
  68. Wen ZT, Burne RA (2004) LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol 186:2682–2691PubMedCentralPubMedCrossRefGoogle Scholar
  69. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938PubMedCrossRefGoogle Scholar
  70. Williams P, Winzer K, Chan WC, camara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362:1119–1134PubMedCentralPubMedCrossRefGoogle Scholar
  71. Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061PubMedCrossRefGoogle Scholar
  72. Xu L, Li H, Vuong C, Vadyvaloo V, Wang J, Yao Y, Otto M, Gao Q (2006) Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun 74:488–496PubMedCentralPubMedCrossRefGoogle Scholar
  73. Yao Y, Vuong C, Kocianova S, Villaruz AE, Lai Y, Sturdevant DE, Otto M (2006) Characterization of the Staphylococcus epidermidis accessory-gene regulator response: quorum-sensing regulation of resistance to human innate host defense. J Infect Dis 193:841–848PubMedCrossRefGoogle Scholar
  74. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850PubMedCentralPubMedCrossRefGoogle Scholar
  75. Zhu J, Kaufmann GF (2013) Quo vadis quorum quenching? Curr Opin Pharmacol 13:688–698PubMedCrossRefGoogle Scholar
  76. Zhu J, Mekalanos JJ (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5:647–656PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of SurgeryTexas Tech University Health Sciences CenterLubbockUSA

Personalised recommendations