Skip to main content

Biofilm Inhibition by Nanoparticles

  • Chapter
  • First Online:
Antibiofilm Agents

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 8))

Abstract

Infectious diseases are of immediate concern due to their high rate of morbidity and mortality. Infectious diseases are life threatening in the current scenario as the causative agents are resistant to almost all the drugs in use. Apart from well-known factors like efflux pumps, receptor modifications, and drug inactivation, formation of biofilms attributes to broad-spectrum resistance toward antimicrobials. This necessitates the search for novel therapeutics that effectively control drug-resistant pathogens. Targeting biofilm formation is one such strategy to combat infectious diseases much more effectively. For over a decade diverse sources of synthetic to semisynthetic agents derived from microbes to plants have been tested for their antibiofilm potential with limited success. The birth of nanotechnology provided new insights into antibiofilm research as these nanoparticles are highly reactive and effective in penetrating the biofilm matrix. This chapter comprehensively summarizes the synthesis, application, weakness, and antibiofilm potential of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63(15):1231–1234

    CAS  Google Scholar 

  • Amer LS, Bishop BM, van Hoek ML (2010) Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem Biophys Res Commun 396(2):246–251

    CAS  PubMed  Google Scholar 

  • Amoozgar Z, Park J, Lin Q, Weidle JH 3rd, Yeo Y (2013) Development of quinic acid-conjugated nanoparticles as a drug carrier to solid tumors. Biomacromolecules 14(7):2389–2395

    CAS  PubMed  Google Scholar 

  • Anghel I, Grumezescu AM (2013) Hybrid nanostructured coating for increased resistance of prosthetic devices to staphylococcal colonization. Nanoscale Res Lett 8(1):6

    PubMed Central  PubMed  Google Scholar 

  • Anghel I, Grumezescu AM, Andronescu E, Anghel AG, Ficai A, Saviuc C, Grumezescu V, Vasile BS, Chifiriuc MC (2012) Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development. Nanoscale Res Lett 7(1):501

    PubMed Central  PubMed  Google Scholar 

  • Annamalai A, Christina VL, Sudha D, Kalpana M, Lakshmi PT (2013) Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B Biointerfaces 108:60–65

    CAS  PubMed  Google Scholar 

  • Antony JJ, Nivedheetha M, Siva D, Pradeepha G, Kokilavani P, Kalaiselvi S, Sankarganesh A, Balasundaram A, Masilamani V, Achiraman S (2013) Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla. Colloids Surf B Biointerfaces 109:20–24

    CAS  PubMed  Google Scholar 

  • Apte M, Girme G, Bankar A, Ravikumar A, Zinjarde S (2013a) 3, 4-dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. J Nanobiotechnol 11:2

    CAS  Google Scholar 

  • Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S (2013b) Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3(1):32

    PubMed Central  PubMed  Google Scholar 

  • Arai M, Niikawa H, Kobayashi M (2013) Marine-derived fungal sesterterpenes, ophiobolins, inhibit biofilm formation of Mycobacterium species. J Nat Med 67(2):271–275

    CAS  PubMed  Google Scholar 

  • Bakkiyaraj D, Pandian SK (2010) In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms. Biofouling 26(6):711–717

    CAS  PubMed  Google Scholar 

  • Bakkiyaraj D, Sivasankar C, Pandian SK (2012) Inhibition of quorum sensing regulated biofilm formation in Serratia marcescens causing nosocomial infections. Bioorg Med Chem Lett 22(9):3089–3094

    CAS  PubMed  Google Scholar 

  • Balaji K, Thenmozhi R, Pandian SK (2013) Effect of subinhibitory concentrations of fluoroquinolones on biofilm production by clinical isolates of Streptococcus pyogenes. Indian J Med Res 137(5):963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8(1):1–16

    Google Scholar 

  • Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI (2010) Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci USA 107(51):22038–22043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bink A, Kucharikova S, Neirinck B, Vleugels J, Van Dijck P, Cammue BP, Thevissen K (2012) The nonsteroidal antiinflammatory drug diclofenac potentiates the in vivo activity of caspofungin against Candida albicans biofilms. J Infect Dis 206(11):1790–1797

    CAS  PubMed  Google Scholar 

  • Blundell G, Henderson WJ, Price EW (1989) Soil particles in the tissues of the foot in endemic elephantiasis of the lower legs. Ann Trop Med Parasitol 83(4):381–385

    CAS  PubMed  Google Scholar 

  • Borges A, Saavedra MJ, Simoes M (2012) The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 28(7):755–767

    CAS  PubMed  Google Scholar 

  • Borm PJ, Schins RP, Albrecht C (2004) Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer 110(1):3–14

    CAS  PubMed  Google Scholar 

  • Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38(11–12):913–923

    CAS  PubMed  Google Scholar 

  • Brackman G, Defoirdt T, Miyamoto C, Bossier P, Van Calenbergh S, Nelis H, Coenye T (2008) Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 8:149

    PubMed Central  PubMed  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870

    CAS  PubMed  Google Scholar 

  • Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V (2004) Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286(2):L344–L353

    CAS  PubMed  Google Scholar 

  • Buzea C, Blandino IIP, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR172

    PubMed  Google Scholar 

  • Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110(1–2):49–74

    CAS  PubMed  Google Scholar 

  • Cardoso Sa N, Cavalcante TT, Araujo AX, dos Santos HS, Albuquerque MR, Bandeira PN, da Cunha RM, Cavada BS, Teixeira EH (2012) Antimicrobial and antibiofilm action of Casbane Diterpene from Croton nepetaefolius against oral bacteria. Arch Oral Biol 57(5):550–555

    PubMed  Google Scholar 

  • Carey JD (2003) Engineering the next generation of large-area displays: prospects and pitfalls. Philos Trans A Math Phys Eng Sci 361(1813):2891–2907

    CAS  PubMed  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83(1):42–48

    CAS  PubMed  Google Scholar 

  • Cheow WS, Hadinoto K (2012) Green preparation of antibiotic nanoparticle complex as potential anti-biofilm therapeutics via self-assembly amphiphile-polyelectrolyte complexation with dextran sulfate. Colloids Surf B Biointerfaces 92:55–63

    CAS  PubMed  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 52(6):1636–1653

    CAS  PubMed  Google Scholar 

  • Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazar V, Andronescu E (2012) Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Res Lett 7:209

    PubMed Central  PubMed  Google Scholar 

  • Choi H, Lee DG (2012) Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity. Biochim Biophys Acta 1820(12):1831–1838

    CAS  PubMed  Google Scholar 

  • Corachan M (1988) Endemic non-filarial elephantiasis of the lower limbs: podoconiosis. Med Clin (Barc) 91(3):97–100

    CAS  Google Scholar 

  • Costa C, Conte A, Buonocore GG, Del Nobile MA (2011) Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol 148(3):164–167

    CAS  PubMed  Google Scholar 

  • Costa PM, Cardoso AL, Mendonca LS, Serani A, Custodia C, Conceicao M, Simoes S, Moreira JN, Pereira de Almeida L, Pedroso de Lima MC (2013) Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a promising system for glioblastoma treatment. Mol Ther Nucleic Acids 2:e100

    PubMed Central  PubMed  Google Scholar 

  • Cristina B, Kevin R (2005) Assembling the puzzle of superconducting elements: a review. Supercond Sci Technol 18(1):R1

    Google Scholar 

  • Das B, Mandal M, Upadhyay A, Chattopadhyay P, Karak N (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 8(3):035003

    CAS  PubMed  Google Scholar 

  • Dasenbrock C, Peters L, Creutzenberg O, Heinrich U (1996) The carcinogenic potency of carbon particles with and without PAH after repeated intratracheal administration in the rat. Toxicol Lett 88(1–3):15–21

    CAS  PubMed  Google Scholar 

  • Deng D, Zhang D, Li Y, Achilefu S, Gu Y (2013) Gold nanoparticles based molecular beacons for in vitro and in vivo detection of the matriptase expression on tumor. Biosens Bioelectron 49C:216–221

    Google Scholar 

  • Driscoll KE, Carter JM, Howard BW, Hassenbein DG, Pepelko W, Baggs RB, Oberdorster G (1996) Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicol Appl Pharmacol 136(2):372–380

    CAS  PubMed  Google Scholar 

  • Du WL, Xu YL, Xu ZR, Fan CL (2008) Preparation, characterization and antibacterial properties against E. coli K(88) of chitosan nanoparticle loaded copper ions. Nanotechnology 19(8):085707

    PubMed  Google Scholar 

  • Du L, Xian L, Feng J-X (2010) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13(3):921–930

    Google Scholar 

  • Durmus NG, Webster TJ (2013) Eradicating antibiotic-resistant biofilms with silver-conjugated superparamagnetic iron oxide nanoparticles. Adv Healthc Mater 2(1):165–171

    CAS  PubMed  Google Scholar 

  • Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV (2013) Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on E. coli. J Environ Sci Health A Tox Hazard Subst Environ Eng 48(8):871–878

    CAS  PubMed  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Google Scholar 

  • Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF, Schneider GE (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103(13):5054–5059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eshed M, Lellouche J, Matalon S, Gedanken A, Banin E (2012) Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir 28(33):12288–12295

    CAS  PubMed  Google Scholar 

  • Evliyaoglu Y, Kobaner M, Celebi H, Yelsel K, Dogan A (2011) The efficacy of a novel antibacterial hydroxyapatite nanoparticle-coated indwelling urinary catheter in preventing biofilm formation and catheter-associated urinary tract infection in rabbits. Urol Res 39(6):443–449

    CAS  PubMed  Google Scholar 

  • Ferin J (1994) Pulmonary retention and clearance of particles. Toxicol Lett 72(1–3):121–125

    CAS  PubMed  Google Scholar 

  • Furlani RE, Yeagley AA, Melander C (2012) A flexible approach to 1,4-di-substituted 2-aminoimidazoles that inhibit and disperse biofilms and potentiate the effects of beta-lactams against multi-drug resistant bacteria. Eur J Med Chem 62C:59–70

    Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247

    Google Scholar 

  • Geethalakshmi R, Sarada DV (2012) Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties. Int J Nanomedicine 7:5375–5384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 92(Suppl):98S–110S

    PubMed  Google Scholar 

  • Grumezescu AM, Saviuc C, Chifiriuc MC, Hristu R, Mihaiescu DE, Balaure P, Stanciu G, Lazar V (2011) Inhibitory activity of Fe(3) O(4)/oleic acid/usnic acid-core/shell/extra-shell nanofluid on S. aureus biofilm development. IEEE Trans Nanobiosci 10(4):269–274

    Google Scholar 

  • Grumezescu AM, Chifiriuc MC, Saviuc C, Grumezescu V, Hristu R, Mihaiescu DE, Stanciu GA, Andronescu E (2012) Hybrid nanomaterial for stabilizing the antibiofilm activity of Eugenia carryophyllata essential oil. IEEE Trans Nanobiosci 11(4):360–365

    Google Scholar 

  • Hafner JH, Cheung CL, Woolley AT, Lieber CM (2001) Structural and functional imaging with carbon nanotube AFM probes. Prog Biophys Mol Biol 77(1):73–110

    CAS  PubMed  Google Scholar 

  • Hamouda IM (2012) Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res 26(3):143–151

    CAS  Google Scholar 

  • Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499

    PubMed  Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9):3314–3320

    CAS  PubMed  Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Nino K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomedicine 7:2109–2113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I, Arevalo-Nino K, Cabral-Romero C (2013) Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomedicine 8:1645–1652

    PubMed Central  PubMed  Google Scholar 

  • Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles: known and unknown health risks. J Nanobiotechnol 2(1):12

    Google Scholar 

  • Hrubesh LW, Poco JF (1995) Thin aerogel films for optical, thermal, acoustic and electronic applications. J Non Cryst Solids 188((1–2)):46–53

    CAS  Google Scholar 

  • Huda S, Smoukov SK, Nakanishi H, Kowalczyk B, Bishop K, Grzybowski BA (2010) Antibacterial nanoparticle monolayers prepared on chemically inert surfaces by cooperative electrostatic adsorption (CELA). ACS Appl Mater Interfaces 2(4):1206–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61(Pt 12):1719–1726

    CAS  PubMed  Google Scholar 

  • Hwang YY, Ramalingam K, Bienek DR, Lee V, You T, Alvarez R (2013) Antimicrobial activity of nanoemulsion in combination with cetylpyridinium chloride on multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 57(8):3568–3575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imperi F, Massai F, Ramachandran Pillai C, Longo F, Zennaro E, Rampioni G, Visca P, Leoni L (2013) New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57(2):996–1005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iskandar F (2009) Nanoparticle processing for optical applications: a review. Adv Powder Technol 20(4):283–292

    CAS  Google Scholar 

  • Jacoby M (2002) Nanoscale electronics. Chem Eng News Arch 80(39):38–43

    Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63

    CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Roopan SM, Kirthi AV, Venkatesan J, Kim SK, Iyappan M, Siva C (2013) Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 107:82–89

    CAS  PubMed  Google Scholar 

  • Jirage KB, Hulteen JC, Martin CR (1997) Nanotubule-based molecular-filtration membranes. Science 278(5338):655–658

    CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    CAS  PubMed  Google Scholar 

  • Kalishwaralal K, BarathManiKanth S, Pandian SR, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces 79(2):340–344

    CAS  PubMed  Google Scholar 

  • Kalpana BJ, Aarthy S, Pandian SK (2012) Antibiofilm activity of alpha-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol 167(6):1778–1794

    CAS  PubMed  Google Scholar 

  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karunanidhi A, Thomas R, van Belkum A, Neela V (2013) In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain. Biomed Res Int 2013:392058

    PubMed Central  PubMed  Google Scholar 

  • Khan S, Alam F, Azam A, Khan AU (2012) Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomedicine 7:3245–3257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110(49):24923–24928

    CAS  PubMed  Google Scholar 

  • Kiran GS, Sabarathnam B, Selvin J (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol 59(3):432–438

    CAS  PubMed  Google Scholar 

  • Kishen A, Shi Z, Shrestha A, Neoh KG (2008) An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod 34(12):1515–1520

    PubMed  Google Scholar 

  • Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H, Lehr CM (2000) A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug Chem 11(6):926–932

    CAS  PubMed  Google Scholar 

  • Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr Microbiol 44(1):49–55

    CAS  PubMed  Google Scholar 

  • Kumar CG, Mamidyala SK (2011) Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 84(2):462–466

    CAS  PubMed  Google Scholar 

  • Kuzma L, Wysokinska H, Rozalski M, Budzynska A, Wieckowska-Szakiel M, Sadowska B, Paszkiewicz M, Kisiel W, Rozalska B (2012) Antimicrobial and anti-biofilm properties of new taxodione derivative from hairy roots of Salvia austriaca. Phytomedicine 19(14):1285–1287

    CAS  PubMed  Google Scholar 

  • Lamppa JW, Griswold KE (2013) Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother 57(1):137–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK (2010) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30

    Google Scholar 

  • Latimer J, Forbes S, McBain AJ (2012) Attenuated virulence and biofilm formation in Staphylococcus aureus following sublethal exposure to triclosan. Antimicrob Agents Chemother 56(6):3092–3100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leifert A, Pan-Bartnek Y, Simon U, Jahnen-Dechent W (2013) Molecularly stabilised ultrasmall gold nanoparticles: synthesis, characterization and bioactivity. Nanoscale 5(14):6224–6242

    CAS  PubMed  Google Scholar 

  • Lellouche J, Kahana E, Elias S, Gedanken A, Banin E (2009) Antibiofilm activity of nanosized magnesium fluoride. Biomaterials 30(30):5969–5978

    CAS  PubMed  Google Scholar 

  • Lellouche J, Friedman A, Gedanken A, Banin E (2012a) Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine 7:5611–5624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E (2012b) Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomedicine 7:1175–1188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lellouche J, Friedman A, Lellouche JP, Gedanken A, Banin E (2012c) Improved antibacterial and antibiofilm activity of magnesium fluoride nanoparticles obtained by water-based ultrasound chemistry. Nanomedicine 8(5):702–711

    CAS  PubMed  Google Scholar 

  • Leuba KD, Durmus NG, Taylor EN, Webster TJ (2013) Carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. Int J Nanomedicine 8:731–736

    PubMed Central  PubMed  Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414

    CAS  PubMed  Google Scholar 

  • Li LL, Wang H (2013) Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo. Adv Healthc Mater 2(10):1351–1360

    CAS  PubMed  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62(1):58–63

    CAS  PubMed  Google Scholar 

  • Li D, Cui F, Zhao Z, Liu D, Xu Y, Li H, Yang X (2013) The impact of titanium dioxide nanoparticles on biological nitrogen removal from wastewater and bacterial community shifts in activated sludge. Biodegradation. doi:10.1007/s10532-013-9648-z

    Google Scholar 

  • Liu HK, Wang GX, Guo Z, Wang J, Konstantinov K (2006a) Nanomaterials for lithium-ion rechargeable batteries. J Nanosci Nanotechnol 6(1):1–15

    PubMed  Google Scholar 

  • Liu J, Wong HL, Moselhy J, Bowen B, Wu XY, Johnston MR (2006b) Targeting colloidal particulates to thoracic lymph nodes. Lung Cancer 51(3):377–386

    PubMed  Google Scholar 

  • Liu G, Mao J, Jiang Z, Sun T, Hu Y, Zhang C, Dong J, Huang Q, Lan Q (2013a) Transferrin-modified doxorubicin-loaded biodegradable nanoparticles exhibit enhanced efficacy in treating brain glioma-bearing rats. Cancer Biother Radiopharm 28(9):691–696

    CAS  PubMed  Google Scholar 

  • Liu Y, Sun Y, Xu Y, Feng H, Fu S, Tang J, Liu W, Sun D, Jiang H, Xu S (2013b) Preparation and evaluation of lysozyme-loaded nanoparticles coated with poly-gamma-glutamic acid and chitosan. Int J Biol Macromol 59:201–207

    CAS  PubMed  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924

    CAS  PubMed  Google Scholar 

  • Lucarelli M, Gatti AM, Savarino G, Quattroni P, Martinelli L, Monari E, Boraschi D (2004) Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur Cytokine Netw 15(4):339–346

    CAS  PubMed  Google Scholar 

  • Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces 4(3):1313–1323

    CAS  PubMed  Google Scholar 

  • Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2(1):29–37

    CAS  PubMed  Google Scholar 

  • Martinez-Gutierrez F, Boegli L, Agostinho A, Sanchez EM, Bach H, Ruiz F, James G (2013) Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29(6):651–660

    CAS  PubMed  Google Scholar 

  • Matsusaki M, Larsson K, Akagi T, Lindstedt M, Akashi M, Borrebaeck CA (2005) Nanosphere induced gene expression in human dendritic cells. Nano Lett 5(11):2168–2173

    CAS  PubMed  Google Scholar 

  • Mehta M, Chen LC, Gordon T, Rom W, Tang MS (2008) Particulate matter inhibits DNA repair and enhances mutagenesis. Mutat Res 657(2):116–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mochizuki D, Tamura S, Yasutake H, Kataoka T, Mitsuo K, Wada Y (2013) A photostable bi-luminophore pressure-sensitive paint measurement system developed with mesoporous silica nanoparticles. J Nanosci Nanotechnol 13(4):2777–2781

    CAS  PubMed  Google Scholar 

  • Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A (2012) An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine 8(6):916–924

    CAS  PubMed  Google Scholar 

  • Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M (2012) Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Lett Appl Microbiol 54(5):383–391

    CAS  PubMed  Google Scholar 

  • Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M (2013) Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses 56(6):672–680

    CAS  PubMed  Google Scholar 

  • Montella M, Franceschi S, Geddes da Filicaia M, De Macro M, Arniani S, Balzi D, Delfino M, Iannuzzo M, Buonanno M, Satriano RA (1997) Classical Kaposi sarcoma and volcanic soil in southern Italy: a case-control study. Epidemiol Prev 21(2):114–117

    CAS  PubMed  Google Scholar 

  • Mott JA, Meyer P, Mannino D, Redd SC, Smith EM, Gotway-Crawford C, Chase E (2002) Wildland forest fire smoke: health effects and intervention evaluation, Hoopa, California, 1999. West J Med 176(3):157–162

    PubMed Central  PubMed  Google Scholar 

  • Mukhopadhyay A, Basak S, Das JK, Medda SK, Chattopadhyay K, De G (2010) Ag-TiO2 nanoparticle codoped SiO2 films on ZrO2 barrier-coated glass substrates with antibacterial activity in ambient condition. ACS Appl Mater Interfaces 2(9):2540–2546

    CAS  PubMed  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30(1):545–610

    CAS  Google Scholar 

  • Musthafa KS, Balamurugan K, Pandian SK, Ravi AV (2012a) 2,5-Piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1. J Basic Microbiol 52(6):679–686

    CAS  PubMed  Google Scholar 

  • Musthafa KS, Sivamaruthi BS, Pandian SK, Ravi AV (2012b) Quorum sensing inhibition in Pseudomonas aeruginosa PAO1 by antagonistic compound phenylacetic acid. Curr Microbiol 65(5):475–480

    CAS  PubMed  Google Scholar 

  • Naz SS, Islam NU, Shah MR, Alam SS, Iqbal Z, Bertino M, Franzel L, Ahmed A (2013) Enhanced biocidal activity of Au nanoparticles synthesized in one pot using 2, 4-dihydroxybenzene carbodithioic acid as a reducing and stabilizing agent. J Nanobiotechnol 11(1):13

    CAS  Google Scholar 

  • Nemmar A, Hoylaerts MF, Hoet PH, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B (2002) Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med 166(7):998–1004

    PubMed  Google Scholar 

  • Nikula KJ, Snipes MB, Barr EB, Griffith WC, Henderson RF, Mauderly JL (1995) Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon black in F344 rats. Fundam Appl Toxicol 25(1):80–94

    CAS  PubMed  Google Scholar 

  • Nithya C, Pandian SK (2010) The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp. Arch Microbiol 192(10):843–854

    CAS  PubMed  Google Scholar 

  • Nithya C, Aravindraja C, Pandian SK (2010a) Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria. Res Microbiol 161(4):293–304

    CAS  PubMed  Google Scholar 

  • Nithya C, Begum MF, Pandian SK (2010b) Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 88(1):341–358

    CAS  PubMed  Google Scholar 

  • Nithya C, Devi MG, Pandian SK (2011) A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in gram-positive and gram-negative species. Biofouling 27(5):519–528

    CAS  PubMed  Google Scholar 

  • Oberdorster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(Suppl 5):173–179

    PubMed Central  PubMed  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Packiavathy IASV, Agilandeswari P, Musthafa KS, Pandian SK, Ravi AV (2012) Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int 45(1):85–92

    CAS  Google Scholar 

  • Packiavathy IA, Sasikumar P, Pandian SK, Ravi A (2013) Prevention of quorum-sensing-mediated biofilm development and virulence factors production in Vibrio spp. by curcumin. Appl Microbiol Biotechnol 97(23):10177–10187

    CAS  PubMed  Google Scholar 

  • Pan B, Huang RZ, Han SQ, Qu D, Zhu ML, Wei P, Ying HJ (2010) Design, synthesis, and antibiofilm activity of 2-arylimino-3-aryl-thiazolidine-4-ones. Bioorg Med Chem Lett 20(8):2461–2464

    CAS  PubMed  Google Scholar 

  • Pandiyarajan T, Udayabhaskar R, Vignesh S, James RA, Karthikeyan B (2013) Synthesis and concentration dependent antibacterial activities of CuO nanoflakes. Mater Sci Eng C Mater Biol Appl 33(4):2020–2024

    CAS  PubMed  Google Scholar 

  • Park JH, Lee JH, Cho MH, Herzberg M, Lee J (2012a) Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. FEMS Microbiol Lett 335(1):31–38

    CAS  PubMed  Google Scholar 

  • Park JH, Lee JH, Kim CJ, Lee JC, Cho MH, Lee J (2012b) Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnol Lett 34(4):655–661

    CAS  PubMed  Google Scholar 

  • Patel MB, Harikrishnan U, Valand NN, Modi NR, Menon SK (2013) Novel cationic quinazolin-4(3H)-one conjugated fullerene nanoparticles as antimycobacterial and antimicrobial agents. Arch Pharm (Weinheim) 346(3):210–220

    CAS  Google Scholar 

  • Pender DS, Vangala LM, Badwaik VD, Willis CB, Aguilar ZP, Sangoi TN, Paripelly R, Dakshinamurthy R (2013) Bactericidal activity of starch-encapsulated gold nanoparticles. Front Biosci 18:993–1002

    CAS  Google Scholar 

  • Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, Reed W, Rothen-Rutishauser B, Schurch S, Schulz H (2006) Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 3:13

    PubMed Central  PubMed  Google Scholar 

  • Pinto RJ, Almeida A, Fernandes SC, Freire CS, Silvestre AJ, Neto CP, Trindade T (2013) Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids Surf B Biointerfaces 103:143–148

    CAS  PubMed  Google Scholar 

  • Pompilio A, Pomponio S, Di Vincenzo V, Crocetta V, Nicoletti M, Piovano M, Garbarino JA, Di Bonaventura G (2013) Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients. Future Microbiol 8(2):281–292

    CAS  PubMed  Google Scholar 

  • Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P (2012) A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerfaces 96:50–55

    CAS  PubMed  Google Scholar 

  • Raghavendra GM, Jayaramudu T, Varaprasad K, Sadiku R, Ray SS, Mohana Raju K (2013) Cellulose-polymer-Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydr Polym 93(2):553–560

    CAS  PubMed  Google Scholar 

  • Raimondi MV, Maggio B, Raffa D, Plescia F, Cascioferro S, Cancemi G, Schillaci D, Cusimano MG, Vitale M, Daidone G (2012) Synthesis and anti-staphylococcal activity of new 4-diazopyrazole derivatives. Eur J Med Chem 58:64–71

    CAS  PubMed  Google Scholar 

  • Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68(11):5459–5463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramamurthy CH, Padma M, Samadanam ID, Mareeswaran R, Suyavaran A, Kumar MS, Premkumar K, Thirunavukkarasu C (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf B Biointerfaces 102:808–815

    CAS  PubMed  Google Scholar 

  • Rane RA, Sahu NU, Shah CP (2012) Synthesis and antibiofilm activity of marine natural product-based 4-thiazolidinones derivatives. Bioorg Med Chem Lett 22(23):7131–7134

    CAS  PubMed  Google Scholar 

  • Rane RA, Sahu NU, Shah CP, Shah NK (2013) Design, synthesis and anti-staphylococcal activity of marine pyrrole alkaloid derivatives. J Enzyme Inhib Med Chem. doi:10.3109/14756366.2013.793183

  • Reymond JL, Bergmann M, Darbre T (2013) Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chem Soc Rev 42:4814–4822

    CAS  PubMed  Google Scholar 

  • Risom L, Moller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 592(1–2):119–137

    CAS  PubMed  Google Scholar 

  • Rodrigues AG, Ping LY, Marcato PD, Alves OL, Silva MC, Ruiz RC, Melo IS, Tasic L, De Souza AO (2013) Biogenic antimicrobial silver nanoparticles produced by fungi. Appl Microbiol Biotechnol 97(2):775–782

    CAS  PubMed  Google Scholar 

  • Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B Biointerfaces 108:80–84

    CAS  PubMed  Google Scholar 

  • Sanpui P, Murugadoss A, Prasad PV, Ghosh SS, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int J Food Microbiol 124(2):142–146

    CAS  PubMed  Google Scholar 

  • Sarabhai S, Sharma P, Capalash N (2013) Ellagic acid derivatives from Terminalia chebula Retz. Downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS ONE 8(1):e53441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawant SN, Selvaraj V, Prabhawathi V, Doble M (2013) Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS ONE 8(5):e63311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342(1):86–91

    CAS  PubMed  Google Scholar 

  • Schulz H, Harder V, Ibald-Mulli A, Khandoga A, Koenig W, Krombach F, Radykewicz R, Stampfl A, Thorand B, Peters A (2005) Cardiovascular effects of fine and ultrafine particles. J Aerosol Med 18(1):1–22

    CAS  PubMed  Google Scholar 

  • Scott ID, Jung YS, Cavanagh AS, Yan Y, Dillon AC, George SM, Lee SH (2011) Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett 11(2):414–418

    CAS  PubMed  Google Scholar 

  • Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdorster G, Kreyling WG (2004) Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 16(6–7):453–459

    CAS  PubMed  Google Scholar 

  • Shah V, Shah S, Shah H, Rispoli FJ, McDonnell KT, Workeneh S, Karakoti A, Kumar A, Seal S (2012) Antibacterial activity of polymer coated cerium oxide nanoparticles. PLoS ONE 7(10):e47827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi P, Aluri S, Lin YA, Shah M, Edman M, Dhandhukia J, Cui H, Mackay JA (2013) Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo. J Control Release 171(3):330–338

    CAS  PubMed  Google Scholar 

  • Shimizu N, Otsuka K, Sawada H, Maejima T, Shirotake S (2013) Bacteriolysis by vancomycin-conjugated acryl nanoparticles and morphological component analysis. Drug Dev Ind Pharm. doi:10.3109/03639045.2013.788012

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807

    CAS  Google Scholar 

  • Shrestha A, Shi Z, Neoh KG, Kishen A (2010) Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod 36(6):1030–1035

    PubMed  Google Scholar 

  • Singh V, Arora V, Alam MJ, Garey KW (2012) Inhibition of biofilm formation by esomeprazole in Pseudomonas aeruginosa and Staphylococcus aureus. Antimicrob Agents Chemother 56(8):4360–4364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh S, Ashfaq M, Singh RK, Joshi HC, Srivastava A, Sharma A, Verma N (2013) Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. New Biotechnol 30:656–665

    CAS  Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749

    CAS  PubMed  Google Scholar 

  • Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113(8):947–955

    PubMed Central  PubMed  Google Scholar 

  • Styan K, Abrahamian M, Hume E, Poole-Warren LA (2007) Antibacterial polyurethane organosilicate nanocomposites. Key Eng Mat 342:757–760

    Google Scholar 

  • Su R, Jin Y, Liu Y, Tong M, Kim H (2013) Bactericidal activity of Ag-doped multi-walled carbon nanotubes and the effects of extracellular polymeric substances and natural organic matter. Colloids Surf B Biointerfaces 104:133–139

    CAS  PubMed  Google Scholar 

  • Suciu CV, Iwatsubo T, Deki S (2003) Investigation of a colloidal damper. J Colloid Interface Sci 259(1):62–80

    CAS  PubMed  Google Scholar 

  • Sun LM, Zhang CL, Li P (2012) Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J Agric Food Chem 60(24):6150–6156

    CAS  PubMed  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Moon JW, Gu B, Mortensen NP, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2010) Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ Sci Technol 44(13):5210–5215

    CAS  PubMed  Google Scholar 

  • Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, Kaviani M, Atai M (2013) Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater 29(5):495–505

    CAS  PubMed  Google Scholar 

  • Thekkae Padil VV, Cernik M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8:889–898

    PubMed  Google Scholar 

  • Thompson S, Parthasarathy S (2006) Moore’s law: the future of Si microelectronics. Mater Today 9(6):20–25

    CAS  Google Scholar 

  • Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11(2):440–452

    CAS  PubMed  Google Scholar 

  • Vermylen J, Nemmar A, Nemery B, Hoylaerts MF (2005) Ambient air pollution and acute myocardial infarction. J Thromb Haemost 3(9):1955–1961

    CAS  PubMed  Google Scholar 

  • Vidic J, Stankic S, Haque F, Ciric D, Le Goffic R, Vidy A, Jupille J, Delmas B (2013) Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanopart Res 15(5):1595

    PubMed Central  PubMed  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53(1):55–59

    CAS  PubMed  Google Scholar 

  • Vivek R, Nipun Babu V, Thangam R, Subramanian KS, Kannan S (2013) pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B Biointerfaces 111C:117–123

    CAS  PubMed  Google Scholar 

  • Wang X, Lim TT (2013) Highly efficient and stable Ag-AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation. Water Res 47(12):4148–4158

    CAS  PubMed  Google Scholar 

  • Wang H, Liu J, Wu X, Tong Z, Deng Z (2013) Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity. Nanotechnology 24(20):205102

    PubMed  Google Scholar 

  • Westendorf AM (2013) Applications of nanoparticles for treating cutaneous infection. J Invest Dermatol 133(5):1133–1135

    CAS  PubMed  Google Scholar 

  • Wu C, Labrie J, Tremblay YD, Haine D, Mourez M, Jacques M (2013) Zinc as an agent for the prevention of biofilm formation by pathogenic bacteria. J Appl Microbiol 115(1):30–40

    CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    CAS  PubMed  Google Scholar 

  • Xiong R, Lu C, Zhang W, Zhou Z, Zhang X (2013) Facile synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals. Carbohydr Polym 95(1):214–219

    CAS  PubMed  Google Scholar 

  • Yang X, Konishi H, Xu H, Wu M (2006) Comparative sol–hydro(Solvo)thermal synthesis of TiO2 nanocrystals. Eur J Inorg Chem 2006(11):2229–2235

    Google Scholar 

  • Yin H, Zhang H, Liu B (2013) Superior anticancer efficacy of curcumin-loaded nanoparticles against lung cancer. Acta Biochim Biophys Sin (Shanghai) 45(8):634–640

    CAS  Google Scholar 

  • Yu JC, Wang X, Fu X (2004) Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chem Mater 16(8):1523–1530

    CAS  Google Scholar 

  • Zhang L, Yu JC (2003) A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity. Chem Commun 9(16):2078–2079

    Google Scholar 

  • Zhang R, Zhou M, Wang L, McGrath S, Chen T, Chen X, Shaw C (2010) Phylloseptin-1 (PSN-1) from Phyllomedusa sauvagei skin secretion: a novel broad-spectrum antimicrobial peptide with antibiofilm activity. Mol Immunol 47(11–12):2030–2037

    CAS  PubMed  Google Scholar 

  • Zhang H, Wang C, Chen B, Wang X (2012) Daunorubicin-TiO2 nanocomposites as a “smart” pH-responsive drug delivery system. Int J Nanomedicine 7:235–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, Bai Y, Xu HH (2013a) Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent 41(5):464–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang K, Li F, Imazato S, Cheng L, Liu H, Arola DD, Bai Y, Xu HH (2013b) Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res B Appl Biomater 101(6):929–938

    PubMed  Google Scholar 

  • Zhang X, Li Z, Yuan X, Cui Z, Bao H, Li X, Liu Y, Yang X (2013c) Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer. Mater Sci Eng C Mater Biol Appl 33(5):2816–2820

    CAS  PubMed  Google Scholar 

  • Zhao J, Wang Z, Dai Y, Xing B (2013a) Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Res 47(12):4169–4178

    CAS  PubMed  Google Scholar 

  • Zhao L, Zhu B, Jia Y, Hou W, Su C (2013b) Preparation of biocompatible carboxymethyl chitosan nanoparticles for delivery of antibiotic drug. Biomed Res Int 2013:236469

    Google Scholar 

  • Zheng F, Wang S, Wen S, Shen M, Zhu M, Shi X (2013) Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 34(4):1402–1412

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Pandian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bakkiyaraj, D., Pandian, S.K. (2014). Biofilm Inhibition by Nanoparticles. In: Rumbaugh, K., Ahmad, I. (eds) Antibiofilm Agents. Springer Series on Biofilms, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53833-9_17

Download citation

Publish with us

Policies and ethics