Skip to main content

Inhibition of Fungal Biofilms

  • Chapter
  • First Online:
Antibiofilm Agents

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 8))

Abstract

Fungal infections constitute a major threat for an expanding population of immunosuppressed patients, as these infections carry unacceptably high morbidity and mortality rates due to, among other reasons, the limited arsenal of antifungal agents. One of the main factors complicating antifungal therapy is the formation of fungal biofilms, resulting in frank resistance to most antifungal drugs, which is multifactorial in nature. Although Candida albicans remains the most frequent etiologic agent of fungal biofilm infections, there is an increased recognition that infections caused by other yeasts and filamentous fungi are also associated with the formation of biofilms, both on biomedical devices and host tissues. During the last decade an increasing number of studies have begun to uncover the driving forces behind the formation of fungal biofilms and the molecular basis of biofilm resistance; together with new powerful technologies, they may pave the road for the development of newer therapeutics for the prevention and treatment of these recalcitrant infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55(Pt 8):999–1008

    CAS  PubMed  Google Scholar 

  • Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A (2004) Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 72(10):6023–6031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bachmann SP, VandeWalle K, Ramage G, Patterson TF, Wickes BL, Graybill JR, Lopez-Ribot JL (2002) In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 46(11):3591–3596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bachmann SP, Ramage G, VandeWalle K, Patterson TF, Wickes BL, Lopez-Ribot JL (2003) Antifungal combinations against Candida albicans biofilms in vitro. Antimicrob Agents Chemother 47(11):3657–3659

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baillie GS, Douglas LJ (1998a) Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 42(8):1900–1905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baillie GS, Douglas LJ (1998b) Iron-limited biofilms of Candida albicans and their susceptibility to amphotericin B. Antimicrob Agents Chemother 42(8):2146–2149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banerjee SN, Emori TG, Culver DH, Gaynes RP, Jarvis WR, Horan T, Edwards JR, Tolson J, Henderson T, Martone WJ (1991) Secular trends in nosocomial primary bloodstream infections in the United States, 1980–1989. National Nosocomial Infections Surveillance System. Am J Med 91(3B):86S–89S

    CAS  PubMed  Google Scholar 

  • Beck-Sague C, Jarvis WR (1993) Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. National Nosocomial Infections Surveillance System. J Infect Dis 167(5):1247–1251

    CAS  PubMed  Google Scholar 

  • Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9(6):588–594

    CAS  PubMed  Google Scholar 

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv113

    Google Scholar 

  • Cateau E, Rodier MH, Imbert C (2008) In vitro efficacies of caspofungin or micafungin catheter lock solutions on Candida albicans biofilm growth. J Antimicrob Chemother 62(1):153–155

    CAS  PubMed  Google Scholar 

  • Chanda SK, Caldwell JS (2003) Fulfilling the promise: drug discovery in the post-genomic era. Drug Discov Today 8(4):168–174

    CAS  PubMed  Google Scholar 

  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183(18):5385–5394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costa AC, Pereira CA, Freire F, Junqueira JC, Jorge AO (2013) Methods for obtaining reliable and reproducible results in studies of Candida biofilms formed in vitro. Mycoses 56:614–622

    PubMed  Google Scholar 

  • Crump JA, Collignon PJ (2000) Intravascular catheter-associated infections. Eur J Clin Microbiol Infect Dis 19(1):1–8

    CAS  PubMed  Google Scholar 

  • Cushion MT, Collins MS (2011) Susceptibility of Pneumocystis to echinocandins in suspension and biofilm cultures. Antimicrob Agents Chemother 55(10):4513–4518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cushion MT, Collins MS, Linke MJ (2009) Biofilm formation by Pneumocystis spp. Eukaryot Cell 8(2):197–206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis LE, Cook G, Costerton JW (2002) Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8(4):376–379

    PubMed Central  PubMed  Google Scholar 

  • Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8(4):e1002585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson J, Sood A, Hogan DA (2009) Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol 75(2):504–513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harriott MM, Lilly EA, Rodriguez TE, Fidel PL Jr, Noverr MC (2010) Candida albicans forms biofilms on the vaginal mucosa. Microbiology 156(Pt 12):3635–3644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez S, Lopez-Ribot JL, Najvar LK, McCarthy DI, Bocanegra R, Graybill JR (2004) Caspofungin resistance in Candida albicans: correlating clinical outcome with laboratory susceptibility testing of three isogenic isolates serially obtained from a patient with progressive Candida esophagitis. Antimicrob Agents Chemother 48(4):1382–1383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54(5):1212–1223

    CAS  PubMed  Google Scholar 

  • Joyner PM, Liu J, Zhang Z, Merritt J, Qi F, Cichewicz RH (2010) Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Org Biomol Chem 8(24):5486–5489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Junqueira JC, Jorge AO, Barbosa JO, Rossoni RD, Vilela SF, Costa AC, Primo FL, Goncalves JM, Tedesco AC, Suleiman JM (2012) Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc). Lasers Med Sci 27(6):1205–1212

    CAS  PubMed  Google Scholar 

  • Kojic EM, Darouiche RO (2004) Candida infections of medical devices. Clin Microbiol Rev 17(2):255–267

    PubMed Central  PubMed  Google Scholar 

  • Krzossok S, Birck R, Henke S, Hof H, van der Woude FJ, Braun C (2004) Trichosporon asahii infection of a dialysis PTFE arteriovenous graft. Clin Nephrol 62(1):66–68

    CAS  PubMed  Google Scholar 

  • Kucharikova S, Tournu H, Holtappels M, Van Dijck P, Lagrou K (2010) In vivo efficacy of anidulafungin against mature Candida albicans biofilms in a novel rat model of catheter-associated Candidiasis. Antimicrob Agents Chemother 54(10):4474–4475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kucharikova S, Tournu H, Lagrou K, Van Dijck P, Bujdakova H (2011) Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J Med Microbiol 60(Pt 9):1261–1269

    CAS  PubMed  Google Scholar 

  • Kucharikova S, Sharma N, Spriet I, Maertens J, Van Dijck P, Lagrou K (2013) Activities of systemically administered echinocandins against in vivo mature Candida albicans biofilms developed in a rat subcutaneous model. Antimicrob Agents Chemother 57(5):2365–2368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA (2002) Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 46(6):1773–1780

    CAS  PubMed Central  PubMed  Google Scholar 

  • LaFleur MD, Kumamoto CA, Lewis K (2006) Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50(11):3839–3846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lafleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54(1):39–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • LaFleur MD, Lucumi E, Napper AD, Diamond SL, Lewis K (2011) Novel high-throughput screen against Candida albicans identifies antifungal potentiators and agents effective against biofilms. J Antimicrob Chemother 66(4):820–826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazzell AL, Chaturvedi AK, Pierce CG, Prasad D, Uppuluri P, Lopez-Ribot JL (2009) Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemother 64(3):567–570

    CAS  PubMed  Google Scholar 

  • Lopez-Ribot JL (2005) Candida albicans biofilms: more than filamentation. Curr Biol 15(12):R453–R455

    CAS  PubMed  Google Scholar 

  • Loussert C, Schmitt C, Prevost MC, Balloy V, Fadel E, Philippe B, Kauffmann-Lacroix C, Latge JP, Beauvais A (2010) In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol 12(3):405–410

    CAS  PubMed  Google Scholar 

  • Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73(14):4592–4601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez LR, Christaki E, Casadevall A (2006) Specific antibody to Cryptococcus neoformans glucurunoxylomannan antagonizes antifungal drug action against cryptococcal biofilms in vitro. J Infect Dis 194(2):261–266

    CAS  PubMed  Google Scholar 

  • Martinez LR, Mihu MR, Han G, Frases S, Cordero RJ, Casadevall A, Friedman AJ, Friedman JM, Nosanchuk JD (2010a) The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials 31(4):669–679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez LR, Mihu MR, Tar M, Cordero RJ, Han G, Friedman AJ, Friedman JM, Nosanchuk JD (2010b) Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. J Infect Dis 201(9):1436–1440

    CAS  PubMed  Google Scholar 

  • Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R (2007) Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell 6(12):2429–2436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, Oliveira R (2010) Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169(5):323–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martins M, Henriques M, Lopez-Ribot JL, Oliveira R (2012a) Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55(1):80–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martins M, Lazzell AL, Lopez-Ribot JL, Henriques M, Oliveira R (2012b) Effect of exogenous administration of Candida albicans autoregulatory alcohols in a murine model of hematogenously disseminated candidiasis. J Basic Microbiol 52(4):487–491

    CAS  PubMed  Google Scholar 

  • Morales DK, Jacobs NJ, Rajamani S, Krishnamurthy M, Cubillos-Ruiz JR, Hogan DA (2010) Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol 78(6):1379–1392

    CAS  PubMed  Google Scholar 

  • Mowat E, Williams C, Jones B, McChlery S, Ramage G (2009) The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm? Med Mycol 47(Suppl 1):S120–S126

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA (2003) Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71(8):4333–4340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muszkieta L, Beauvais A, Pahtz V, Gibbons JG, Anton Leberre V, Beau R, Shibuya K, Rokas A, Francois JM, Kniemeyer O, Brakhage AA, Latge JP (2013) Investigation of Aspergillus fumigatus biofilm formation by various “omics” approaches. Front Microbiol 4:13

    PubMed Central  PubMed  Google Scholar 

  • Navarathna DH, Hornby JM, Krishnan N, Parkhurst A, Duhamel GE, Nickerson KW (2007) Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect Immun 75(4):1609–1618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nett J, Andes D (2006) Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol 9(4):340–345

    CAS  PubMed  Google Scholar 

  • Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D (2007) Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51(2):510–520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15(12):1150–1155

    CAS  PubMed  Google Scholar 

  • Nobile CJ, Mitchell AP (2006) Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 8(9):1382–1391

    CAS  PubMed  Google Scholar 

  • Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP (2006a) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2(7):e63

    PubMed Central  PubMed  Google Scholar 

  • Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006b) Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 5(10):1604–1610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP (2008) Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18(14):1017–1024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS, Nantel A, Andes DR, Johnson AD, Mitchell AP (2009) Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 7(6):e1000133

    PubMed Central  PubMed  Google Scholar 

  • Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148(1–2):126–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11(6):272–279

    CAS  PubMed  Google Scholar 

  • Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH (2010) An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 9(9):719–727

    CAS  PubMed  Google Scholar 

  • Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48(5):503–535

    CAS  PubMed  Google Scholar 

  • Patterson TF, Kirkpatrick WR, White M, Hiemenz JW, Wingard JR, Dupont B, Rinaldi MG, Stevens DA, Graybill JR (2000) Invasive aspergillosis. Disease spectrum, treatment practices, and outcomes. I3 Aspergillus Study Group. Medicine (Baltimore) 79(4):250–260

    CAS  Google Scholar 

  • Pereira CA, Romeiro RL, Costa AC, Machado AK, Junqueira JC, Jorge AO (2011) Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci 26(3):341–348

    PubMed  Google Scholar 

  • Perlin DS (2011) Current perspectives on echinocandin class drugs. Future Microbiol 6(4):441–457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perumal P, Mekala S, Chaffin WL (2007) Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 51(7):2454–2463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20(1):133–163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, Lopez-Ribot JL (2008) A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3(9):1494–1500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce CG, Saville SP, Lopez-Ribot JL (2011) Characterization of small molecule inhibitors of Candida albicans biofilm formation using phenotype-based high content screening: implications for antifungal drug development. Paper presented at FEBS Advanced Lecture Course on Human Fungal Pathogens, Le Colle-sur-Loup, France

    Google Scholar 

  • Pini G, Faggi E, Donato R, Fanci R (2005) Isolation of Trichosporon in a hematology ward. Mycoses 48(1):45–49

    CAS  PubMed  Google Scholar 

  • Pitangui NS, Sardi JC, Silva JF, Benaducci T, Moraes da Silva RA, Rodriguez-Arellanes G, Taylor ML, Mendes-Giannini MJ, Fusco-Almeida AM (2012) Adhesion of Histoplasma capsulatum to pneumocytes and biofilm formation on an abiotic surface. Biofouling 28(7):711–718

    CAS  PubMed  Google Scholar 

  • Pusateri CR, Monaco EA, Edgerton M (2009) Sensitivity of Candida albicans biofilm cells grown on denture acrylic to antifungal proteins and chlorhexidine. Arch Oral Biol 54(6):588–594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raad I (1998) Intravascular-catheter-related infections. Lancet 351(9106):893–898

    CAS  PubMed  Google Scholar 

  • Ramage G, Vande Walle K, Wickes BL, Lopez-Ribot JL (2001a) Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45(9):2475–2479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramage G, Vandewalle K, Wickes BL, Lopez-Ribot JL (2001b) Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 18(4):163–170

    CAS  PubMed  Google Scholar 

  • Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot JL (2002a) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49(6):973–980

    CAS  PubMed  Google Scholar 

  • Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2002b) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68(11):5459–5463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramage G, VandeWalle K, Bachmann SP, Wickes BL, Lopez-Ribot JL (2002c) In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. Antimicrob Agents Chemother 46(11):3634–3636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramage G, VandeWalle K, Lopez-Ribot JL, Wickes BL (2002d) The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 214(1):95–100

    CAS  PubMed  Google Scholar 

  • Ramage G, Tomsett K, Wickes BL, Lopez-Ribot JL, Redding SW (2004) Denture stomatitis: a role for Candida biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98(1):53–59

    PubMed  Google Scholar 

  • Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4(4):633–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramage G, Martinez JP, Lopez-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6(7):979–986

    CAS  PubMed  Google Scholar 

  • Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35(4):340–355

    CAS  PubMed  Google Scholar 

  • Ramage G, Rajendran R, Sherry L, Williams C (2012) Fungal biofilm resistance. Int J Microbiol 2012:528521

    PubMed Central  PubMed  Google Scholar 

  • Ravi S, Pierce C, Witt C, Wormley FL Jr (2009) Biofilm formation by Cryptococcus neoformans under distinct environmental conditions. Mycopathologia 167(6):307–314

    PubMed  Google Scholar 

  • Redding S, Bhatt B, Rawls HR, Siegel G, Scott K, Lopez-Ribot J (2009) Inhibition of Candida albicans biofilm formation on denture material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(5):669–672

    PubMed  Google Scholar 

  • Reddy BT, Torres HA, Kontoyiannis DP (2002) Breast implant infection caused by Trichosporon beigelii. Scand J Infect Dis 34(2):143–144

    PubMed  Google Scholar 

  • Ricicova M, Kucharikova S, Tournu H, Hendrix J, Bujdakova H, Van Eldere J, Lagrou K, Van Dijck P (2010) Candida albicans biofilm formation in a new in vivo rat model. Microbiology 156(Pt 3):909–919

    CAS  PubMed  Google Scholar 

  • Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE (2011) Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7(9):e1002257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanglard D, Coste A, Ferrari S (2009) Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 9(7):1029–1050

    CAS  PubMed  Google Scholar 

  • Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62(Pt 1):10–24

    CAS  PubMed  Google Scholar 

  • Schinabeck MK, Long LA, Hossain MA, Chandra J, Mukherjee PK, Mohamed S, Ghannoum MA (2004) Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 48(5):1727–1732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherertz RJ, Boger MS, Collins CA, Mason L, Raad II (2006) Comparative in vitro efficacies of various catheter lock solutions. Antimicrob Agents Chemother 50(5):1865–1868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shuford JA, Rouse MS, Piper KE, Steckelberg JM, Patel R (2006) Evaluation of caspofungin and amphotericin B deoxycholate against Candida albicans biofilms in an experimental intravascular catheter infection model. J Infect Dis 194(5):710–713

    CAS  PubMed  Google Scholar 

  • Siles SA, Srinivasan A, Pierce CG, Lopez-Ribot JL, Ramasubramanian AK (2013) High-throughput screening of a collection of known pharmacologically active small compounds for the identification of Candida albicans biofilm inhibitors. Antimicrob Agents Chemother 57:3681–3687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simitsopoulou M, Peshkova P, Tasina E, Katragkou A, Kyrpitzi D, Velegraki A, Walsh TJ, Roilides E (2013) Species-specific and drug-specific differences in susceptibility of Candida biofilms to echinocandins: characterization of less common bloodstream isolates. Antimicrob Agents Chemother 57(6):2562–2570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sousa C, Henriques M, Oliveira R (2011) Mini-review: antimicrobial central venous catheters–recent advances and strategies. Biofouling 27(6):609–620

    CAS  PubMed  Google Scholar 

  • Srinivasan A, Uppuluri P, Lopez-Ribot J, Ramasubramanian AK (2011) Development of a high-throughput Candida albicans biofilm chip. PLoS One 6(4):e19036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan A, Leung KP, Lopez-Ribot JL, Ramasubramanian AK (2013) High-throughput nano-biofilm microarray for antifungal drug discovery. mBio 4:e00331-13

    PubMed Central  PubMed  Google Scholar 

  • Tobinick EL (2009) The value of drug repositioning in the current pharmaceutical market. Drug News Perspect 22(2):119–125

    PubMed  Google Scholar 

  • Tumbarello M, Fiori B, Trecarichi EM, Posteraro P, Losito AR, De Luca A, Sanguinetti M, Fadda G, Cauda R, Posteraro B (2012) Risk factors and outcomes of candidemia caused by biofilm-forming isolates in a tertiary care hospital. PLoS ONE 7(3):e33705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uppuluri P, Nett J, Heitman J, Andes D (2008) Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 52(3):1127–1132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez Ribot JL (2010a) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828

    PubMed Central  PubMed  Google Scholar 

  • Uppuluri P, Pierce CG, Thomas DP, Bubeck SS, Saville SP, Lopez-Ribot JL (2010b) The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryot Cell 9(10):1531–1537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valentin A, Canton E, Peman J, Martinez JP (2012) Voriconazole inhibits biofilm formation in different species of the genus Candida. J Antimicrob Chemother 67(10):2418–2423

    CAS  PubMed  Google Scholar 

  • Viudes A, Peman J, Canton E, Ubeda P, Lopez-Ribot JL, Gobernado M (2002) Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur J Clin Microbiol Infect Dis 21(11):767–774

    CAS  PubMed  Google Scholar 

  • Walraven CJ, Lee SA (2013) Antifungal lock therapy. Antimicrob Agents Chemother 57(1):1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Du L, You J, King JB, Cichewicz RH (2012) Fungal biofilm inhibitors from a human oral microbiome-derived bacterium. Org Biomol Chem 10(10):2044–2050

    CAS  PubMed  Google Scholar 

  • Wiederhold NP, Grabinski JL, Garcia-Effron G, Perlin DS, Lee SA (2008) Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans. Antimicrob Agents Chemother 52(11):4145–4148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J (2002) The direct cost and incidence of systemic fungal infections. Value Health 5(1):26–34

    PubMed  Google Scholar 

  • You J, Du L, King JB, Hall BE, Cichewicz RH (2013) Small-molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida isolates. ACS Chem Biol 8(4):840–848

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Biofilm work in the laboratory is funded by Grant numbered 1R01DE023510 from the National Institute of Dental & Craniofacial Research (to JLL-R) and by the Army Research Office of the Department of Defense under Contract No. W911NF-11-1-0136. Infectious diseases-related work in the A.K.R. laboratory is funded by NIH (SC1HL112629). CGP and AS acknowledge the receipt of predoctoral fellowships from American Heart Association, numbered 51PRE30004 and 13PRE17110093. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript, and the content is solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. López-Ribot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pierce, C.G., Srinivasan, A., Uppuluri, P., Ramasubramanian, A.K., López-Ribot, J.L. (2014). Inhibition of Fungal Biofilms. In: Rumbaugh, K., Ahmad, I. (eds) Antibiofilm Agents. Springer Series on Biofilms, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53833-9_13

Download citation

Publish with us

Policies and ethics