Skip to main content

Atherosklerose und Ca++-Kanalblocker

  • Conference paper
  • 24 Accesses

Zusammenfassung

Unter Atherosklerose versteht man eine Gefäßwanderkrankung, die sich durch funktionelle Veränderung des Endothels, die Infiltration mononukleärer Phagozyten, eine intimale Akkumulation von Lipiden und Ca++, die Proliferation glatter Muskelzellen in der Intima sowie Störungen der Thrombozytenfunktion und Fibrinolyse auszeichnet. Ca++-Kanalblocker, die bereits seit Jahren als Pharmaka mit geringer Toxizität bei Hypertonie und koronarer Herzkrankheit angewendet werden, können eine Vielzahl dieser atherogenen Prozesse modulieren (Tabelle 1) und zeigen in tierexperimentellen Studien (34, 35) ein antiatherogenes Potential. Darüber hinaus bestätigen neuere Patientenstudien (36) diese Beobachtungen und weisen darauf hin, daß Ca++-Kanalblocker offensichtlich in erster Linie frühe Läsionen beeinflussen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Tedgui A, Chiron B, Curmi P (1987) Effect of nicardipine and verapamil on in vitro albumin transport in rabbit thoracic aorta. Arteriosclerosis 7: 80–87

    Article  PubMed  CAS  Google Scholar 

  2. Strohschneider T, Betz E (1989) Densiometric measurement of increased endothelial permeability in arterosclerotic plaques and inhibition of permeability under the influence of two calcium antagonists. Atherosclerosis 75: 135–144

    Article  PubMed  CAS  Google Scholar 

  3. Grodzinska L, Basista M, Slawinski M, Swies J, Stachura J, Ohlrogge R (1987) Nifedipine stimulated release of prostacyclin-like substance in normal and atherosclerotic animals. Arzneim Forsch 37: 412–415

    CAS  Google Scholar 

  4. Gleerup G, Winther K (1989) Differential effects of non-specific beta-blockade and calcium antagonism on blood-clotting mechanism. Am J Med 86: 127

    Article  PubMed  CAS  Google Scholar 

  5. Winther K (1990) Scandiavian Adalate Conference, Kopenhagen

    Google Scholar 

  6. Nilsson J, Sjölund M, Palmberg L, Von Euler AM, Jonzon B, Thyberg J (1985) The calcium antagonist nifedipine inhibits arterial smooth muscle cell proliferation. Atherosclerosis 58: 109–122

    Article  PubMed  CAS  Google Scholar 

  7. Saito Y, Fujiyama Y, Shirai K, Yoshida S (1983) Effects of nifedipine on lipid metabolism in smooth muscle cells. Proc of 6th International Adalat Symposium. Lichtlen Ed 479–483; Excerpta Medica Amsterdam, Holland

    Google Scholar 

  8. Nomoto A, Mutoh S, Hagihara H, Yamaguchi I (1988) Smooth muscle cell migration induced by inflammatory cell products and its inhibition by a potent calcium antagonist, nivaldipine. Atherosclerosis 72: 213–219

    Article  PubMed  CAS  Google Scholar 

  9. Johnsson H (1981) Effects by nifedipine on platelet function in vitro and in vivo. Thromb Res 21: 523–528

    Article  PubMed  CAS  Google Scholar 

  10. Orekhov AN, Tertov VV, Khashimov KA, Kudryashov SA, Smirnov VN (1986) Antiatherosclerotic effects of verapamil in primary culture of human aortic intimai cells. J Hypertens 4 (suppl 6 ): 153155

    Google Scholar 

  11. Stein I, Halperin G, Stein Y (1987) Long-term effects of verapamil on aortic smooth muscle cells cultured in the presence of hypercholesterolemic serum. Arteriosclerosis 7: 585–592

    Article  PubMed  CAS  Google Scholar 

  12. Weinstein DB, Heider J (1987) Antiatherogenic properties of calcium antagonists. Am J Cardiol, 59: 163B - 172B

    Article  PubMed  CAS  Google Scholar 

  13. Van Valen RG, Deacon RW, Farley C, Melden MK, Uhl HF, Saunders RN, Handley DA (1985) Antiproliferative effect of calcium channel blockers PN 200–110 and PY 108–068 in the rat carotid model of ballon catheterization. Fed Proc 44: 737–743

    Google Scholar 

  14. Orekhov AN, Baldenkov GN, Tertov VV, Ryong LH, Kozlov SG, Lyakishev AA, Tkachuk VA, Ruda MY, Smirnov VN (1988) Cardiovascular drugs and atherosclerosis: Effects of calcium antagonists, beta-blockers and nitrates on atherosclerotic characteristics of human aortic cells. J Cardio Pharma 12 (Suppl 6): 566–568

    Google Scholar 

  15. Heider JG, Weinstein DB, Ickens CE, Lan S, Su CM (1987) Antiatherogenic activity of the calcium channel blocker isradipine (PN 200–110): A novel effect on matrix synthesis independent of calcium channel blockade. Transplant Proc 29 (suppl 5): 96–101

    Google Scholar 

  16. Fleckenstein A, Frey M, Zorn J, Fleckenstein-Grün G (1987) The role of calcium in the pathogenesis of experimental arteriosclerosis. TIPS 8: 496–501

    CAS  Google Scholar 

  17. Stasch JP, Kazda R (1989) Endothelin-1 induced vascular contractions: Interactions with drugs affecting the calcium channel. J Cardiol Pharmacol 13: 561–566

    Google Scholar 

  18. Stein O, Leitersdorf E, Stein Y (1985) Verapamil enhances receptor-mediated endocytosis of low density lipoproteins by aortic cells in culture. Arteriosclerosis 5: 35–46

    Article  PubMed  CAS  Google Scholar 

  19. Etingin OR, Hajjar DJ (1985) Nifedipine increases cholesteryl ester hydrolytic activity in lipid-laden arterial smooth muscle cells. J Clin Invest 75: 1554–1558

    Article  PubMed  CAS  Google Scholar 

  20. Etingin OR, Hajjar DJ (1990) Calcium channel blockers enhance cholesteryl ester hydrolysis and decrease total cholesterol accumulation in human aortic tissue. Circ Res 66: 185–190

    Article  PubMed  CAS  Google Scholar 

  21. Nakao J, Ooyama T, Chang WC, Churota S, Orimo H (1983) Platelets stimulate aortic smooth muscle cell migration in vitro —Involvement of 12-L-hydroxy-5,8,10,14,-eicosatetranoic acid. Atherosclerosis 43: 143–151

    Article  Google Scholar 

  22. Johnsson H (1981) Effects by nifedipine on platelet function in vitro and in vivo. Thromb Res 21: 523–528

    Article  PubMed  CAS  Google Scholar 

  23. Kiyomoto A, Sasaki J, Odawara A, Morta T (1983) Inhibition of platelet aggregation by diltiazem. Circ Res 52: 115–119

    CAS  Google Scholar 

  24. Fritschka E, Kribben A, Distler A, Philipp T (1987) Inhibition of aggregation and calcium influx of human platelets by nifedipine. J Cardiovasc Pharmacol. 9: 985–989

    Article  Google Scholar 

  25. Mehta J, Mehta P, Ostrowski N, Crews F (1983) Effects of verapamil on platelet aggregation, ATP release and thromboxane generation. Thromb Res 30: 469–475

    Google Scholar 

  26. Mehta J, Mehta P, Ostrowski N (1986) Calcium blocker diltiazem inhibits platelet activation and stimulates vascular prostacyclin synthesis. Am J Med Sci 291: 20–24

    Article  PubMed  CAS  Google Scholar 

  27. Block LH, Emmons LR, Vogt E, Sachinidis A, Vetter W, Hoppe J (1989) Ca“-channel blockers inhibit the action of recombinant platelet-derived growth factor in vascular smooth muscle cells. Proc Natl Acad Sci USA 86: 2388–2392

    Article  PubMed  CAS  Google Scholar 

  28. Yatsu FM, Alam R, Alam SS (1985) Enhancement of cholesteryl ester metabolism in cultured humaa monocyte-derived macrophages by verapamil. Biochim Biophys Acta 847: 77–81

    Article  PubMed  CAS  Google Scholar 

  29. Daugherty A, Rateri DL, Schonffeld G, Sobel B.E. (1987) Inhibition of cholesteryl ester deposition in macrophages by calcium entry blockers: An effect dissociable from calcium entry blockade. Br J Pharmacol 33: 2377–2382

    Google Scholar 

  30. Schmitz G, Robenek H, Beuck M, Krause R, Schurek A, Niemann R (1988) Ca“-antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechansims: I. Characterization of cellular lipid metabolism. Arteriosclerosis 8: 46–56

    Google Scholar 

  31. Ondrias K, Misik V, Gerbel D, Stasko A (1989) Lipid peroxidation of phosphatidylcholine liposomes depressed by calcium channel blockers nifedipine and verapamil and by the antiarrhytmic-antihypoxic drug stobadine. Biochim Biophys Acta 1003: 238–245

    Article  PubMed  CAS  Google Scholar 

  32. Mak IT, Weglicki WB (1990) Comparative antioxidant activities of propranolol, nifedipine, verapamil and diltiazem against sarcolemmal membrane lipid peroxidation. Circ Res 66: 1449–1452

    Article  PubMed  CAS  Google Scholar 

  33. Janero DR, Burghardt B, Lopez R (1988) Protection of cardiac membrane phospholipid against oxidative injury by calcium antagonists. Biochem Pharmacol 37: 4197–4203

    Article  PubMed  CAS  Google Scholar 

  34. Henry PD and Bently KI (1981) Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine. J Clin Invest 68: 1366–1369

    Article  PubMed  CAS  Google Scholar 

  35. Willis AL, Nagel B, Churchill V, Whyte M, Smith DL, Mahmud I, Pappione DL (1985) Antiatherosclerotic effects of nicardipine and nifedipine in cholesterol-fed rabbits. Arteriosclerosis 5: 250–255

    Article  PubMed  CAS  Google Scholar 

  36. Lichtlen PR, Hugenholtz PG, Rafflenbeul W, Hecker H, Jost S, Deckers JW (1990) Retardation of angiographic progression of coronary artery disease by nifedipine. Results of International Nifedipine Trial on Antiatherosclerotic Therapy ( INTACT ). Lancet 335: 1109–1113

    Google Scholar 

  37. Ross R (1986) The pathogenesis of artherosclerosis-an update. N Engl J Med 314: 488–500

    Article  PubMed  CAS  Google Scholar 

  38. Ross R (1990) Mechanisms of atherosclerosis-a review. Adv Nephrol 19: 79–86

    CAS  Google Scholar 

  39. Nilsson J (1986) Growth factors and the pathogenesis of atherosclerosis. Atherosclerosis 62: 185–199

    Article  PubMed  CAS  Google Scholar 

  40. Moncada S, Radomski MW (1985) The problems and promise of prostaglandin influence in atherogenesis. Ann NY Acad Sci 454: 121–129

    Article  PubMed  CAS  Google Scholar 

  41. Vane JR, Gryglewski RJ, Bottin RM (1987) The endothelial cell as a metabolic and endocrine organ. TIPS 8: 491–496

    CAS  Google Scholar 

  42. Grulich-Henn J, Müller-Berghaus G (1989) The role of vascular endothelial cells in the regulation of fibrinolysis. Z Kardiol 78: 25–29

    PubMed  Google Scholar 

  43. Gerrity RG (1981) The role of the monocyte in atherogenesis. Am J Pathol 103: 181–191

    PubMed  CAS  Google Scholar 

  44. Faggiotto A, Ross R, Harker L (1984) Studies of hypercholesterolemia in the nonhuman primate, Part 1 and Part 2. Arteriosclerosis, 4:323 and 341

    Google Scholar 

  45. Parthasarathy S, Wieland E, Steinberg D (1989) A role of endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA 86: 1046–1050

    Article  PubMed  CAS  Google Scholar 

  46. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD (1990) Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 344: 160–162

    Article  PubMed  CAS  Google Scholar 

  47. Quinn MT, Parthasarathy S, Steinberg D (1985) Endothelial cell-derived chemotatic activity for mouse peritoneal macrophages and the effect of modified forms of low density lipoprotein. Proc Natl Acad Sci USA 82: 5949–5953

    Article  PubMed  CAS  Google Scholar 

  48. Frostegard J, Nilsson J, Haegerstrand A, Hamsten A, Wigzell H, Gidlund M (1990) Oxidized low density lipoprotein induces differentiation and adhesion of human monocytes and the monocytic cell line U938. Proc Natl Acad Sci 87: 904–908

    Article  PubMed  CAS  Google Scholar 

  49. Brown MS, Goldstein JL (1990) Scavenging for receptors. Nature 343: 508–509

    Article  PubMed  CAS  Google Scholar 

  50. Kodama T, Freeman M, Rohrer L, Zabreczky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains a-helical and collagen-like coiled coils. Nature 343: 531–535

    Article  PubMed  CAS  Google Scholar 

  51. Brown MS, Ho YK, Goldstein JL (1980) The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem 255: 9344–9349

    Google Scholar 

  52. Kraemer FB, Tavanger K, Gandjei RK, Kilrew, Behr SR (1990) Effects of activation on lipid and lipoprotein metabolism in murine macrophages. Arteriosclerosis 10: 8–16

    Article  PubMed  CAS  Google Scholar 

  53. Löms Ziegler-Heitbrock HW (1989) The biology of the monocyte system. Eur J Cell Biology 49: 1–12

    Google Scholar 

  54. Habenicht AJR, Glomset JA, King WC, Nist C, Mitchell CD, Ross R (1981) Early changes in phosphatidylinositol and arachidonic acid metabolism in quiescent Swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J Biol Chem 256: 12329–12335

    PubMed  CAS  Google Scholar 

  55. Cheung WT, Shi MM, Young JD, Lee CM (1987) Inhibition of radioligand binding to A, adenosine receptors by Bay K 8644 and nifedipine. Biochem Pharmacol 36: 2183–2187

    Article  PubMed  CAS  Google Scholar 

  56. Striessnig J, Goll A, Moosburger K, Glossmann H (1986) Purified calcium channels have three allosterically coupled drug receptors, FEBS Lett. 197: 204–210

    Article  PubMed  CAS  Google Scholar 

  57. Cantor EH, Kenessy A, Semenuk G, Spector S (1984) Interaction of calcium channel blockers with non-neuronal benzodiazepine binding sites. Proc Natl Acad Sci USA 81: 1549–1552

    Article  PubMed  CAS  Google Scholar 

  58. Gottesman M, Pastan I (1988) The multidrug transporter, a double-edged sword. J Biol Chem 263: 12163–12166

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmitz, G., Hankowitz, J. (1991). Atherosklerose und Ca++-Kanalblocker. In: Gleichmann, U., Mannebach, H., Gleichmann, S., Held, K. (eds) Herausforderung Atherosklerose in den 90ern. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-53795-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53795-0_1

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-53796-7

  • Online ISBN: 978-3-642-53795-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics