Skip to main content

Evolution of Modern Fishes: Critical Biological Innovations

  • Chapter
  • First Online:
Book cover The Vertebrate Integument Volume 1

Abstract

Modern fishes comprise the largest and most successful group of all vertebrates on the planet. The higher fishes are divided into two major groupings, Chondrichthyes or cartilaginous fishes and the Osteichthyes or bony fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlberg PE (1991) Tetrapod or near tetrapod fossils from the upper devonian of Scotland. Nature 354:298–301

    Article  Google Scholar 

  • Braun HA, Wissing H, Schaefer K, Hirsch MC (1994) Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367:270–273

    Article  CAS  PubMed  Google Scholar 

  • Bruce BD (1992) Preliminary observations in the biology of the white shark, Carcharodon carcharias, in South Australian waters. Aust J Mar Freshw Res 43:1–11

    Article  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. Freeman, New York

    Google Scholar 

  • Colbert EH (1955) Evolution of the vertebrates. Wiley, New York

    Google Scholar 

  • Cliff G, Dudley SFJ, Davis B (1989) Sharks caught in the protectivegill nets off Natal, South Africa 2. The great white shark Carcharodon carcharias (Linnaeus). S Afr J Mar Sci 8:131–144

    Article  Google Scholar 

  • Daeschler EB, Shubin NH, Jenkins FA Jr (2006) A Devonian tetrapod-like fish and theevolution of the tetrapod body plan. Nature 440:757–763. doi:10.1038/nature04639

    Google Scholar 

  • Donoghue PC, Sansom IJ, Downs JP (2006) Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J Exp Zool B (Mol Dev Evol) 306:278–294

    Article  Google Scholar 

  • Fish FE, Shannahan LD (2000) The role of the pectoral fins in body trim of sharks. J Fish Biol 56:1062–1073

    Article  Google Scholar 

  • Goujet D (2001) Placoderms and basal ganthostome apomorphies. In: Ahlberg PE (ed) Major events in early vertebrate evolution. Taylor and Francis, London and New York, pp 209–222

    Google Scholar 

  • Helfman GS, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes, 2nd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  • Hildebrand M (1995) Analysis of vertebrate structure. Wiley-Blackwell, John Wiley and Sons, Inc. New York

    Google Scholar 

  • Inoue JG, Miya M, Lam K, Tay B-H, Danks JA et al (2010) Evolutionary origin and phylogeny of the modern holocephalans (chondrichthyes: chimaeriformes): a mitogenomic perspective. Mol Biol Evol 27:2576–2586. doi:10.1093/molbev/msq147

    Article  CAS  PubMed  Google Scholar 

  • Janvier P (2001) Ostracoderms and the shaping of gnathostome characters. In: Ahlberg PE (ed) Major events in early vertebrate evolution. Taylor and Francis, London, pp 172–186

    Google Scholar 

  • Jarvik E (1980) Basic Structure and Evolution of the Vertebrates (Vol 1). Academic Press, London

    Google Scholar 

  • Kajiura SM, Holland KN (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks. J Exp Biol 205:3609–3621

    PubMed  Google Scholar 

  • Kalmijn AJ (1971) The electric sense of sharks and rays. J Exp Biol 55:371–383

    CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A (ed) Handbook of sensory physiology, vol 3, Electroreceptors and other specialized receptors in lower vertebrates. Springer, Berlin, pp 147–200

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Chapter  Google Scholar 

  • Liem KF (1990) Aquatic versus terrestrial feeding modes: possible impacts on the trophic ecology of vertebrates. Amer Zool 30:209–221

    Google Scholar 

  • Lingham-Soliar T (2005a) Dorsal fin in the white shark, Carcharodon carcharias: a dynamic stabilizer for fast swimming. J Morphol 263:1–11

    Article  PubMed  Google Scholar 

  • Lingham-Soliar T (2005b) Caudal fin in the white shark, carcharodon carcharias (lamnidae): a dynamic propeller for fast, efficient swimming. J Morphol 264:233–252

    Article  PubMed  Google Scholar 

  • Lingham-Soliar T (2005c) Caudal fin allometry in the white shark carcharodon carcharias: implications for locomotory performance and ecology. Naturwissenschaften 92:231–236

    Article  CAS  PubMed  Google Scholar 

  • Lund R (1990) Shadows in time—a capsule history of sharks. In: Gruber SH (ed) Discovering sharks American Littoral Society special publication 14. American Littoral Society, Highlands

    Google Scholar 

  • Metscher BD, Ahlberg PE (2001) Origin of the teleost tail:phylogenetic frameworks for developmental studies. In: Ahlberg PE (ed) Major events in early vertebrate evolution.Taylor Francis, London, p 333–349

    Google Scholar 

  • Moin P, Bewley T (1994) Feedback control of turbulence. Appl Mech Rev (part 2) 47:3–13

    Google Scholar 

  • Moin P, Kim J (1997) Tackling turbulence with supercomputers. Am Sci 276(1):46–52

    Google Scholar 

  • Motta P, Habegger ML, Lang A, Hueter R, Davis J (2012) Scale morphology and flexibility in the shortfin mako Isurus oxyrinchus and the blacktip shark Carcharhinus limbatus. J Morphol. doi:10.1002/jmor.20047

    PubMed  Google Scholar 

  • Nelson JS (2006) Fishes of the World, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Reif WE (1985) Squamation and ecology of sharks. Cour Forsch-Inst Senckenberg 78:1–255

    Google Scholar 

  • Reif WE, Dinkelacker A (1982) Hydrodynamics of the squamation in fast swimming sharks. N Jb Geol Paläont Abh 164:184–187

    Google Scholar 

  • Schellart NAM, Wubbels RJ (1998) The auditory and mechanosensory lateral line system. In: Evans DH (ed) The physiology of fishes. CRC Press, New York, pp 283–312

    Google Scholar 

  • Strong R, Murphy RC, Bruce BD, Nelson DR (1992) Movements and associated observations of bait-attracted white sharks, Carcharodon carcharias: a preliminary report. Aust J Mar Freshw Res 43:13–20

    Article  Google Scholar 

  • Thomson KS, Simanek DE (1977) Body form and locomotion in sharks. Am Zool 17:343–354

    Google Scholar 

  • Tricas TC, McCosker JE (1984) Predatory behavior of the white shark (Carcharodon carcharias), with notes on its biology. Proc Calif Acad Sci 43:221–238

    Google Scholar 

  • Vickaryous MK, Sire J-Y (2009) The integumentary skeleton of tetrapods: origin, evolution, and development. J Anat 214:441–464. doi:10.1111/j.1469-7580.2008.01043.x

    Article  PubMed  Google Scholar 

  • Von der Emde G (1998) Electroreception. In: Evans DH (ed) The physiology of fishes. CRC Press, New York, pp 313–343

    Google Scholar 

  • Webb PW (1997) Swimming. In: Evans DH (ed) The physiology of fishes. CRC Press, New York, pp 3–24

    Google Scholar 

  • Wilga CD, Lauder GV (2002) Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata. J Exp Biol 203:2261–2278

    Google Scholar 

  • Zhu M, Wang W, Yu X (2010) Meemannia eos, a basal sarcopterygian fish from the lower devonian of China—expanded description and significance. In: Elliott DK, Maisey X, Yu JG, Miao M (eds) Morphology, phylogeny and paleobiogeography of fossil fishes. Verlag Dr. Friedrich Pfeil, Munich, pp 199–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theagarten Lingham-Soliar .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lingham-Soliar, T. (2014). Evolution of Modern Fishes: Critical Biological Innovations. In: The Vertebrate Integument Volume 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53748-6_4

Download citation

Publish with us

Policies and ethics