Skip to main content

Robot Learning by Guided Self-Organization

  • Chapter

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 9))

Abstract

Self-organizing processes are not only crucial for the development of living beings, but can also spur new developments in robotics, e. g. to increase fault tolerance and enhance flexibility, provided that the prescribed goals can be realized at the same time. This combination of an externally specified objective and autonomous exploratory behavior is very interesting for practical applications of robot learning. In this chapter, we will present several forms of guided self-organization in robots based on homeokinesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amari, S.: Natural gradients work efficiently in learning. Neural Computation 10 (1998)

    Google Scholar 

  • Bongard, J.C., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314, 1118–1121 (2006)

    Article  Google Scholar 

  • Butera, F.M.: Urban development as a guided self-organisation process. In: The City and Its Sciences, pp. 225–242. Springer (1998)

    Google Scholar 

  • Cannon, W.B.: The wisdom of the body. Norton, New York (1939)

    Google Scholar 

  • Chemova, S., Veloso, M.: An evolutionary approach to gait learning for four-legged robots. In: Proc. IEEE IROS 2004, vol. 3, pp. 2562–2567 (2004)

    Google Scholar 

  • Choi, J., Wehrspohn, R.B., Gösele, U.: Mechanism of guided self-organization producing quasi-monodomain porous alumina. Electrochimica Acta 50(13), 2591–2595 (2005)

    Article  Google Scholar 

  • Cruse, H., Dürr, V., Schmitz, J., Schneider, A.: Control of hexapod walking in biological systems. In: Adaptive Motion of Animals and Machines, pp. 17–29. Springer (2006)

    Google Scholar 

  • de Margerie, E., Mouret, J.-B., Doncieux, S., Meyer, J.-A.: Artificial evolution of the morphology and kinematics in a flapping-wing mini UAV. Bioinspiration and Biomimetics 2, 65–82 (2007)

    Article  Google Scholar 

  • Der, R.: Self-organized acquisition of situated behaviors. Theory Biosci. 120, 179–187 (2001)

    Google Scholar 

  • Der, R., Liebscher, R.: True autonomy from self-organized adaptivity. In: Proc. Workshop Biologically Inspired Robotics, Bristol (2002)

    Google Scholar 

  • Der, R., Martius, G.: The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots. Springer (2012)

    Google Scholar 

  • Der, R., Martius, G.: Behavior as broken symmetry in embodied self-organizing robots. In: Advances in Artificial Life, ECAL 2013 (accepted, 2013)

    Google Scholar 

  • Dongyong, Y., Jingping, J., Yuzo, Y.: Distal supervised learning control and its application to CSTRsystems. In: SICE 2000. Proc. of the 39th SICE Annual Conference, pp. 209–214 (2000)

    Google Scholar 

  • Ijspeert, A.J., Hallam, J., Willshaw, D.: Evolving Swimming Controllers for a Simulated Lamprey with Inspiration from Neurobiology. Adaptive Behavior 7(2), 151–172 (1999)

    Article  Google Scholar 

  • Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal teacher. Cognitive Science 16(3), 307–354 (1992)

    Article  Google Scholar 

  • Klyubin, A.S., Polani, D., Nehaniv, C.L.: Empowerment: a universal agent-centric measure of control. In: IEEE Congress on Evolutionary Computation, pp. 128–135. IEEE (2005)

    Google Scholar 

  • Martius, G.: Robustness of guided self-organization against sensorimotor disruptions. Advances in Complex Systems 16(02n03), 1350001 (2013)

    Article  Google Scholar 

  • Martius, G., Der, R., Ay, N.: Information driven self-organization of complex robotic behaviors. PLoS ONE 8(5), e63400 (2013)

    Google Scholar 

  • Martius, G., Herrmann, J.M.: Taming the beast: Guided self-organization of behavior in autonomous robots. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 50–61. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  • Martius, G., Herrmann, J.M.: Tipping the scales: Guidance and intrinsically motivated behavior. In: Advances in Artificial Life, ECAL 2011, pp. 506–513. MIT Press (2011)

    Google Scholar 

  • Martius, G., Herrmann, J.M.: Variants of guided self-organization for robot control. Theory in Biosci. 131(3), 129–137 (2012)

    Google Scholar 

  • Martius, G., Herrmann, J.M., Der, R.: Guided self-organisation for autonomous robot development. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 766–775. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Martius, G., Hesse, F., Güttler, F., Der, R.: LpzRobots: A free and powerful robot simulator (2012), http://robot.informatik.uni-leipzig.de/software

  • Mazzapioda, M., Nolfi, S.: Synchronization and gait adaptation in evolving hexapod robots. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 113–125. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Nolfi, S., Floreano, D.: Evolutionary Robotics. The Biology, Intelligence, and Technology of Self-organizing Machines. MIT Press, Cambridge (2000) (1st print) (2001) (2nd print)

    Google Scholar 

  • Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Pearson, K., Gordon, J.: Spinal reflexes. In: Kandel, E., Schwartz, J.H., Jessell, T.M. (eds.) Principles of Neural Science, 4th edn., pp. 713–736. McGraw-Hill, New York (2000)

    Google Scholar 

  • Peters, J., Schaal, S.: Natural Actor-Critic. Neurocomputing 71(7-9), 1180–1190 (2008)

    Article  Google Scholar 

  • Popp, J.: Spherical robots (2004), http://www.sphericalrobots.com

  • Prokopenko, M.: Design vs self-organization. In: Prokopenko, M. (ed.) Advances in Applied Self-organizing Systems, pp. 3–17. Springer (2008)

    Google Scholar 

  • Prokopenko, M.: Guided self-organization. HFSP Journal 3(5), 287–289 (2009)

    Article  Google Scholar 

  • Rodriguez, A.: Guided Self-Organizing Particle Systems for Basic Problem Solving. PhD thesis, University of Maryland (College Park, Md., USA) (2007)

    Google Scholar 

  • Santello, M., Soechting, J.F.: Force synergies for multifingered grasping. Experimental Brain Research 133(4), 457–467 (2000)

    Article  Google Scholar 

  • Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation, vol. 1431, pp. 199–218. Oxford University Press (2004)

    Google Scholar 

  • Smith, S.C., Herrmann, J.M.: Homeokinetic reinforcement learning. In: Schwenker, F., Trentin, E. (eds.) PSL 2011. LNCS, vol. 7081, pp. 82–91. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  • Stitt, S., Zheng, Y.F.: Distal learning applied to biped robots. In: Proc. of the IEEE Intl. Conf. on Robotics and Automation, pp. 137–142. IEEE Computer Society (1994)

    Google Scholar 

  • Sutton, R.S.: Reinforcement learning: Past, present and future. In: McKay, B., Yao, X., Newton, C.S., Kim, J.-H., Furuhashi, T. (eds.) SEAL 1998. LNCS (LNAI), vol. 1585, p. 195. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  • Wikipedia (2013). Homeostasis — wikipedia, the free encyclopedia (Online accessed July 23, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Martius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martius, G., Der, R., Herrmann, J.M. (2014). Robot Learning by Guided Self-Organization. In: Prokopenko, M. (eds) Guided Self-Organization: Inception. Emergence, Complexity and Computation, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53734-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53734-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53733-2

  • Online ISBN: 978-3-642-53734-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics