On the Role of Embodiment for Self-Organizing Robots: Behavior As Broken Symmetry

  • Ralf DerEmail author
Part of the Emergence, Complexity and Computation book series (ECC, volume 9)


Embodiment and SO form two cornerstones of both modern robotics and the understanding of human and animal intelligence. In particular, the role of the embodiment for the behavior of both artificial and natural beings has become of much and increasing interest in recent times. In robotics, there are essentially two attitudes towards the physical embodiment. On the one hand, with rule based systems and/or systems intended to execute a given motion plan, embodiment is more or less considered as a (nasty) problem opposing the execution of the plan. On the other hand, it is well believed and verified by many examples that living beings are taking much advantage from the physico-mechanical properties of their bodies in order to create natural motion patterns.


Symmetry Breaking Joint Angle Fundamental Mode Learning Rule Spontaneous Symmetry Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthony, T., Polani, D., Nehaniv, C.L.: Impoverished empowerment: ‘Meaningful’ action sequence generation through bandwidth limitation. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part II. LNCS, vol. 5778, pp. 294–301. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. Ay, N., Bernigau, H., Der, R., Prokopenko, M.: Information driven self-organization: The dynamical systems approach to autonomous robot behavior. Theory Biosci. (2012)Google Scholar
  3. Ay, N., Bertschinger, N., Der, R., Güttler, F., Olbrich, E.: Predictive information and explorative behavior of autonomous robots. The European Physical Journal B - Condensed Matter and Complex Systems 63(3), 329–339 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. Behnisch, M., Haschke, R., Ritter, H., Gienger, M., Humanoids: Deformable trees - exploiting local obstacle avoidance. In: Humanoids, pp. 658–663 (2011)Google Scholar
  5. Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)CrossRefGoogle Scholar
  6. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press (1984)Google Scholar
  7. Butko, N.J., Triesch, J.: Exploring the role of intrinsic plasticity for the learning of sensory representations. In: ESANN 2006 Proceedings - 14th European Symposium on Artificial Neural Networks Bruges, pp. 467–472. Neurocomputing (2005)Google Scholar
  8. Der, R.: Self-organized acquisition of situated behaviors. Theory in Biosciences 120, 179–187 (2001)Google Scholar
  9. Der, R., Güttler, F., Ay, N.: Predictive information and emergent cooperativity in a chain of mobile robots. In: Artificial Life XI. MIT Press (2008)Google Scholar
  10. Der, R., Liebscher, R.: True autonomy from self-organized adaptivity. In: Proc. of EPSRC/BBSRC Intl. Workshop on Biologically Inspired Robotics. HP Labs Bristol (2002)Google Scholar
  11. Der, R., Martius, G.: The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots. Springer (2012)Google Scholar
  12. Elbrechter, C., Haschke, R., Ritter, H.: Bi-manual robotic paper manipulation based on real-time marker tracking and physical modelling. In: IROS, pp. 1427–1432 (2011)Google Scholar
  13. Friston, K.: The free-energy principle: a unified brain theory? Nature Reviews. Neuroscience 11(2), 127–138 (2010)CrossRefGoogle Scholar
  14. Friston, K., Adams, R.A., Perrinet, L., Breakspear, M.: Perceptions as Hypotheses: Saccades as Experiments. Frontiers in Psychology, 3 (2012)Google Scholar
  15. Friston, K.J.: A free energy principle for biological systems. Entropy 14(11), 2100–2121 (2012)MathSciNetGoogle Scholar
  16. Friston, K.J., Stephan, K.E.: Free-energy and the brain. Synthese 159(3), 417–458 (2007)CrossRefGoogle Scholar
  17. Grossekathofer, U., Barchunova, A., Haschke, R., Hermann, T., Franzius, M., Ritter, H.: Learning of object manipulation operations from continuous multimodal input. In: Humanoids, pp. 507–512 (2011)Google Scholar
  18. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical foundation for morphological computation with compliant bodies. Biological Cybernetics 105(5-6), 355–370 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: The role of feedback in morphological computation with compliant bodies. Biological Cybernetics 106(10), 595–613 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  20. Jung, T., Polani, D., Stone, P.: Empowerment for continuous agent-environment systems. CoRR, abs/1201.6583 (2012)Google Scholar
  21. Klyubin, A.S., Polani, D., Nehaniv, C.L.: Empowerment: a universal agent-centric measure of control. In: Congress on Evolutionary Computation, pp. 128–135 (2005)Google Scholar
  22. Klyubin, A.S., Polani, D., Nehaniv, C.L.: Representations of space and time in the maximization of information flow in the perception-action loop. Neural Computation 19, 2387–2432 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  23. Kolodziejski, C., Porr, B., Tamosiunaite, M., Wörgötter, F.: On the asymptotic equivalence between differential hebbian and temporal difference learning using a local third factor. In: Advances in Neural Information Processing Systems (2009)Google Scholar
  24. Kolodziejski, C., Porr, B., Wörgötter, F.: Mathematical properties of neuronal td-rules and differential hebbian learning: a comparison. Biological Cybernetics (2008)Google Scholar
  25. Kulvicius, T., Kolodziejski, C., Tamosiunaite, M., Porr, B., Wörgötter, F.: Behavioral analysis of differential hebbian learning in closed-loop systems. Biological Cybernetics (2010)Google Scholar
  26. Lazar, A., Pipa, G., Triesch, J.: The combination of STDP and intrinsic plasticity yields complex dynamics in recurrent spiking networks. In: ESANN, pp. 647–652 (2006)Google Scholar
  27. Lazar, A., Pipa, G., Triesch, J.: Emerging bayesian priors in a self-organizing recurrent network. In: Honkela, T. (ed.) ICANN 2011, Part II. LNCS, vol. 6792, pp. 127–134. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. Markovic, D., Gros, C.: Self-Organized chaos through polyhomeostatic optimization. Physical Review Letters 105(6), 068702 (2010)Google Scholar
  29. Markovic, D., Gros, C.: Intrinsic adaptation in autonomous recurrent neural networks. Neural Computation 24(2), 523–540 (2012)CrossRefMathSciNetGoogle Scholar
  30. Martius, G., Der, R., Ay, N.: Information driven self-organization of complex robotic behavior. PLOS ONE (in press, 2013)Google Scholar
  31. Maycock, J., Dornbusch, D., Elbrechter, C., Haschke, R., Schack, T., Ritter, H.: Approaching manual intelligence. KI 24(4), 287–294 (2010)Google Scholar
  32. Pfeifer, R.: ”Morphological computation” - self-organization, embodiment, and biological inspiration. In: IJCCI (2012)Google Scholar
  33. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, Cambridge (2006)Google Scholar
  34. Pfeifer, R., Gomez, G.: Understanding Intelligence (1999)Google Scholar
  35. Pfeifer, R.: Morphological computation – connecting brain, body, and environment. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 3–4. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  36. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007)CrossRefGoogle Scholar
  37. Prokopenko, M. (ed.): Foundations and Formalizations of Self-organization. Springer (2008)Google Scholar
  38. Prokopenko, M.: Information and self-organization: A macroscopic approach to complex systems. Artificial Life 15(3), 377–383 (2009)CrossRefGoogle Scholar
  39. Prokopenko, M., Boschetti, F., Ryan, A.J.: An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)CrossRefMathSciNetGoogle Scholar
  40. Ritter, H., Haschke, R., Steil, J.J.: Trying to grasp a sketch of a brain for grasping. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS, vol. 5436, pp. 84–102. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  41. Steffen, J., Elbrechter, C., Haschke, R., Ritter, H.J.: Bio-inspired motion strategies for a bimanual manipulation task. In: Humanoids, pp. 625–630 (2010)Google Scholar
  42. Triesch, J.: A gradient rule for the plasticity of a neuron’s intrinsic excitability. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 65–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  43. Triesch, J.: Synergies between intrinsic and synaptic plasticity mechanisms. Neural Computation 19(4), 885–909 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  44. Zahedi, K., Ay, N., Der, R.: Higher coordination with less control – A result of information maximization in the sensorimotor loop. Adaptive Behavior 18(3-4), 338–355 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations