Skip to main content

Information Measures of Complexity, Emergence, Self-organization, Homeostasis, and Autopoiesis

  • Chapter
Guided Self-Organization: Inception

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 9))

Abstract

In recent decades, the scientific study of complex systems (Bar-Yam 1997; Mitchell 2009) has demanded a paradigm shift in our worldviews (Gershenson et al. 2007; Heylighen et al. 2007). Traditionally, science has been reductionistic. Still, complexity occurs when components are difficult to separate, due to relevant interactions. These interactions are relevant because they generate novel informationwhich determines the future of systems. This fact has several implications (Gershenson 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldana-González, M., Coppersmith, S., Kadanoff, L.P.: Boolean dynamics with random couplings. In: Kaplan, E., Marsden, J.E., Sreenivasan, K.R. (eds.) Perspectives and Problems in Nonlinear Science. A Celebratory Volume in Honor of Lawrence Sirovich. Applied Mathematical Sciences Series, Springer, Berlin (2003)

    Google Scholar 

  • Anderson, P.W.: More is different. Science 177, 393–396 (1972)

    Article  Google Scholar 

  • Ash, R.B.: Information Theory. Dover Publications, Inc. (1990)

    Google Scholar 

  • Ashby, W.R.: The nervous system as physical machine: With special reference to the origin of adaptive behavior. Mind 56(221), 44–59 (1947a)

    Article  Google Scholar 

  • Ashby, W.R.: Principles of the self-organizing dynamic system. Journal of General Psychology 37, 125–128 (1947b)

    Article  Google Scholar 

  • Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956)

    MATH  Google Scholar 

  • Ashby, W.R.: Design for a brain: The origin of adaptive behaviour, 2nd edn. Chapman & Hall, London (1960)

    Book  MATH  Google Scholar 

  • Ay, N., Der, R., Prokopenko, M.: Guided self-organization: perception–action loops of embodied systems. Theory in Biosciences 131(3), 125–127 (2012)

    Article  Google Scholar 

  • Bar-Yam, Y.: Dynamics of Complex Systems. Studies in Nonlinearity. Westview Press, Boulder (1997)

    MATH  Google Scholar 

  • Bar-Yam, Y.: Multiscale variety in complex systems. Complexity 9(4), 37–45 (2004)

    Article  MathSciNet  Google Scholar 

  • Bernard, C.: Leçons sur les propriétés physiologiques et les alterations pathologiques des liquides de l’organisme, Paris (1859)

    Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  • Cannon, W.: The wisdom of the body. WW Norton & Co., New York (1932)

    Google Scholar 

  • Delahaye, J.-P., Zenil, H.: On the Kolmogorov-Chaitin complexity for short sequences. In: Calude, C.S. (ed.) Randomness and Complexity: From Leibniz to Chaitin, p. 123. World Scientific, Singapore (2007)

    Chapter  Google Scholar 

  • Delahaye, J.-P., Zenil, H.: Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness. Applied Mathematics and Computation 219(1), 63–77 (2012)

    Article  Google Scholar 

  • Di Paolo, E.A.: Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions. In: Meyer, J.-A., Berthoz, A., Floreano, D., Roitblat, H., Wilson, S.W. (eds.) From animals to animats 6: Proceedings of the 6th International Conference on the Simulation of Adaptive Behavior, pp. 440–449. MIT Press (2000)

    Google Scholar 

  • Edmonds, B.: Syntactic Measures of Complexity. PhD thesis, University of Manchester, Manchester, UK (1999)

    Google Scholar 

  • Fernández, N., Aguilar, J., Gershenson, C., Terán, O.: Sistemas dinámicos como redes computacionales de agentes para la evaluación de sus propiedades emergentes. In: II Simposio Científico y Tecnológico en Computación SCTC 2012, Universidad Central de Venezuela (2012)

    Google Scholar 

  • Fernández, N., Ramírez, A., Solano, F.: Physico-chemical water quality indices. BISTUA 2, 19–30 (2005)

    Google Scholar 

  • Froese, T., Stewart, J.: Life After Ashby: Ultrastability and the Autopoietic Foundations of Biological Autonomy. Cybernetics and Human Knowing 17(4), 7–50 (2010)

    Google Scholar 

  • Gell-Mann, M., Tsallis, C. (eds.): Nonextensive Entropy - Interdisciplinary Applications. Oxford University Press (2004)

    Google Scholar 

  • Gershenson, C.: Contextuality: A philosophical paradigm, with applications to philosophy of cognitive science. POCS Essay, COGS, University of Sussex (2002)

    Google Scholar 

  • Gershenson, C.: Introduction to random Boolean networks. In: Bedau, M., Husbands, P., Hutton, T., Kumar, S., Suzuki, H. (eds.) Workshop and Tutorial Proceedings, Ninth International Conference on the Simulation and Synthesis of Living Systems (ALife IX), Boston, MA, pp. 160–173 (2004)

    Google Scholar 

  • Gershenson, C.: Design and Control of Self-organizing Systems. CopIt Arxives, Mexico (2007), http://tinyurl.com/DCSOS2007

  • Gershenson, C.: The sigma profile: A formal tool to study organization and its evolution at multiple scales. Complexity 16(5), 37–44 (2011)

    Article  Google Scholar 

  • Gershenson, C.: Guiding the self-organization of random Boolean networks. Theory in Biosciences 131(3), 181–191 (2012a)

    Article  Google Scholar 

  • Gershenson, C.: The world as evolving information. In: Minai, A., Braha, D., Bar-Yam, Y. (eds.) Unifying Themes in Complex Systems, vol. VII, pp. 100–115. Springer, Heidelberg (2012b)

    Google Scholar 

  • Gershenson, C.: The implications of interactions for science and philosophy. In: Foundations of Science, Early View (2013)

    Google Scholar 

  • Gershenson, C., Aerts, D., Edmonds, B. (eds.): Philosophy and Complexity. Worldviews, Science and Us. World Scientific, Singapore (2007)

    Google Scholar 

  • Gershenson, C., Fernández, N.: Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity 18(2), 29–44 (2012)

    Article  Google Scholar 

  • Gershenson, C., Heylighen, F.: When can we call a system self-organizing? In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 606–614. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  • Gleick, J.: The information: A history, a theory, a flood. Pantheon, New York (2011)

    Google Scholar 

  • Görnerup, O., Crutchfield, J.P.: Hierarchical self-organization in the finitary process soup. Artificial Life 14(3), 245–254 (2008)

    Article  Google Scholar 

  • Hausser, J., Strimmer, K.: R package ‘entropy’. v. 1.1.7 (2012)

    Google Scholar 

  • Helbing, D.: FuturICT - new science and technology to manage our complex, strongly connected world. arXiv:1108.6131 (2011)

    Google Scholar 

  • Heylighen, F., Cilliers, P., Gershenson, C.: Complexity and philosophy. In: Bogg, J., Geyer, R. (eds.) Complexity, Science and Society, pp. 117–134. Radcliffe Publishing, Oxford (2007)

    Google Scholar 

  • Holzer, R., De Meer, H.: Methods for approximations of quantitative measures in self-organizing systems. In: Bettstetter, C., Gershenson, C. (eds.) IWSOS 2011. LNCS, vol. 6557, pp. 1–15. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  • Jen, E. (ed.): Robust Design: A Repertoire of Biological, Ecological, and Engineering Case Studies. Santa Fe Institute Studies on the Sciences of Complexity. Oxford University Press, Oxford (2005)

    Google Scholar 

  • Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  • Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)

    Google Scholar 

  • Kauffman, S.A.: Investigations. Oxford University Press, Oxford (2000)

    Google Scholar 

  • Langton, C.: Computation at the edge of chaos: Phase transitions and emergent computation. Physica D 42, 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  • Lloyd, S.: Measures of complexity: a non-exhaustive list. Department of Mechanical Engineering. Massachusetts Institute of Technology (2001)

    Google Scholar 

  • Lopez-Ruiz, R., Mancini, H.L., Calbet, X.: A statistical measure of complexity. Physics Letters A 209(5-6), 321–326 (1995)

    Article  Google Scholar 

  • Luisi, P.L.: Autopoiesis: a review and a reappraisal. Naturwissenschaften 90(2), 49–59 (2003)

    Google Scholar 

  • Maturana, H.: Ultrastability...Autopoiesis? Reflective Response to Tom Froese and John Stewart. Cybernetics Human Knowing 18(1-2), 143–152 (2011)

    Google Scholar 

  • Maturana, H., Varela, F.: Autopoiesis and Cognition: The realization of living. Reidel Publishing Company, Dordrecht (1980)

    Book  Google Scholar 

  • Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009)

    Google Scholar 

  • Morin, E.: Restricted complexity, general complexity. In: Gershenson, C., Aerts, D., Edmonds, B. (eds.) Philosophy and Complexity, Worldviews, Science and Us, pp. 5–29. World Scientific, Singapore (2007), Translated from French by Carlos Gershenson

    Google Scholar 

  • Müssel, C., Hopfensitz, M., Kestler, H.A.: BoolNet – an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10), 1378–1380 (2010)

    Article  Google Scholar 

  • Polani, D., Prokopenko, M., Yaeger, L.S.: Information and self-organization of behavior. Advances in Complex Systems 16(2&3), 1303001 (2013)

    Article  Google Scholar 

  • Prokopenko, M.: Guided self-organization. HFSP Journal 3(5), 287–289 (2009)

    Article  Google Scholar 

  • Prokopenko, M., Boschetti, F., Ryan, A.J.: An information-theoretic primer on complexity, self-organisation and emergence. Complexity 15(1), 11–28 (2009)

    Article  MathSciNet  Google Scholar 

  • Prokopenko, M., Lizier, J.T., Obst, O., Wang, X.R.: Relating Fisher information to order parameters. Phys. Rev. E 84, 041116 (2011)

    Google Scholar 

  • Project Contributors, R.: The R project for statistical computing (2012)

    Google Scholar 

  • Ramírez, A., Restrepo, R., Fernández, N.: Evaluación de impactos ambientales causados por vertimientos sobre aguas continentales. Ambiente y Desarrollo 2, 56–80 (2003)

    Google Scholar 

  • Randerson, P., Bowker, D.: Aquatic Ecosystem Simulator (AES) — a learning resource for biological science students (2008)

    Google Scholar 

  • Ruiz-Mirazo, K., Moreno, A.: Basic autonomy as a fundamnental step in the synthesis of life. Artificial Life 10(3), 235–259 (2004)

    Article  Google Scholar 

  • Seidl, D.: Luhmann’s theory of autopoietic social systems. Technical Report 2004-2, Ludwig-Maximilians-Universität München. Munich Business Research paper (2004)

    Google Scholar 

  • Shalizi, C., Crutchfield, J.: Computational mechanics: Pattern and prediction, structure and simplicity. Journal of Statistical Physics 104, 816–879 (2001)

    Article  MathSciNet  Google Scholar 

  • Shalizi, C.R.: Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata. PhD thesis, University of Wisconsin at Madison (2001)

    Google Scholar 

  • Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Google Scholar 

  • Stumm, W.: Chemical Processes Regulating the Composition of Lake Waters. In: O’Sullivan, P., Reynolds, C. (eds.) The Lakes Handbook Vol 1. Limonlogy and Limnetic Ecology, ch. 5, pp. 79–106. Blackwell Science Ltd., Malden (2004)

    Google Scholar 

  • Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics 52(1-2), 479–487 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Tsallis, C.: Entropic nonextensivity: a possible measure of complexity. Chaos, Solitons & Fractals 13(3), 371–391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Varela, F.G., Maturana, H.R., Uribe, R.: Autopoiesis: The organization of living systems, its characterization and a model. Biosystems 5(4), 187–196 (1974)

    Article  Google Scholar 

  • Wagner, A.: Robustness and Evolvability in Living Systems. Princeton University Press, Princeton (2005)

    Google Scholar 

  • Williams, H.T.P.: Homeostatic adaptive networks. PhD thesis, University of Leeds (2006)

    Google Scholar 

  • Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernández, N., Maldonado, C., Gershenson, C. (2014). Information Measures of Complexity, Emergence, Self-organization, Homeostasis, and Autopoiesis. In: Prokopenko, M. (eds) Guided Self-Organization: Inception. Emergence, Complexity and Computation, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53734-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53734-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53733-2

  • Online ISBN: 978-3-642-53734-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics