Skip to main content

On the Cross-Disciplinary Nature of Guided Self-Organisation

  • Chapter

Part of the Emergence, Complexity and Computation book series (ECC,volume 9)

Abstract

Self-organisation is pervasive: neuronal ensembles self-organise into complex spatio-temporal spike patterns which facilitate synaptic plasticity and long-term consolidation of information; large-scale natural or social systems, as diverse as forest fires, landslides, or epidemics, produce spontaneous scale-invariant behaviour; robotic modules self-organise into coordinated motion patterns; individuals within a swarm achieve collective coherence out of isolated actions; and so on. Selforganisation is also valuable: the resultant increase in an internal organisation brings benefits to the (collective) organism, be it a learning brain, a co-evolving ecosystem, an adapting modular robot, or a re-configuring swarm. These benefits are typically realised in increased resilience to external disturbances, adaptivity to novel tasks, and scalability with respect to new challenges. However, self-organisation is difficult to engineer on demand: the intricate fabric of interactions within a self-organising system cannot follow a simple-minded blueprint and resists crude interventions.

Keywords

  • Cellular Automaton
  • Transfer Entropy
  • Modular Robot
  • Information Cascade
  • Reservoir Computing

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ay, N., Bernigau, H., Der, R., Prokopenko, M.: Information-driven self-organization: the dynamical system approach to autonomous robot behavior. Theory in Biosciences 131, 161–179 (2012)

    CrossRef  Google Scholar 

  • Ay, N., Bertschinger, N., Der, R., Güttler, F., Olbrich, E.: Predictive information and explorative behavior of autonomous robots. European Journal of Physics B 63, 329–339 (2008)

    CrossRef  MATH  Google Scholar 

  • Ay, N., Der, R., Prokopenko, M.: Guided self-organization: perception-action loops of embodied systems. Theory in Biosciences, 1–3 (2011)

    Google Scholar 

  • Beer, R.: Dynamical systems and embedded cognition, ch. 12. Cambridge University Press (2013)

    Google Scholar 

  • Beer, R.: Dynamical analysis of evolved agents: A primer. MIT Press (2014)

    Google Scholar 

  • Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    CrossRef  Google Scholar 

  • Bialek, W., Nemenman, I., Tishby, N.: Predictability, complexity and learning. Neural Computation 13, 2409–2463 (2001)

    CrossRef  MATH  Google Scholar 

  • Butko, N.J., Triesch, J.: Exploring the role of intrinsic plasticity for the learning of sensory representations. In: ESANN 2006 Proceedings - 14th European Symposium on Artificial Neural Networks Bruges. Neurocomputing., pp. 467–472 (2005)

    Google Scholar 

  • Capdepuy, P., Polani, D., Nehaniv, C.: Maximization of potential information flow as a universal utility for collective behaviour. In: 2007 IEEE Symposium on Artificial Life, pp. 207–213. IEEE (2007)

    Google Scholar 

  • Crooks, G.: Measuring thermodynamic length. Physical Review Letters, 99(10), 100602+ (2007)

    Google Scholar 

  • Crutchfield, J.P.: Computational mechanics: Natural computation and self-organization. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 3–3. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  • Der, R., Martius, G.: The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots. Springer (2012)

    Google Scholar 

  • Dewar, R.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36(3), 631–641 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Dewar, R.: Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, 371–381 (2005)

    CrossRef  MathSciNet  Google Scholar 

  • Dini, P., Nehaniv, C.L., Egri-Nagy, A., Schilstra, M.J.: Exploring the concept of interaction computing through the discrete algebraic analysis of the Belousov-Zhabotinsky reaction. Biosystems 112(2), 145–162 (2013)

    CrossRef  Google Scholar 

  • Egri-Nagy, A., Nehaniv, C.L.: Symmetries of automata. In: Dömösi, P., Iván, S. (eds.) AFL, p. 391 (2011)

    Google Scholar 

  • Friston, K.: The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13(7), 293–301 (2009)

    CrossRef  Google Scholar 

  • Gershenson, C.: Guiding the self-organization of random boolean networks. Theory in Biosciences 131(3), 181–191 (2012)

    CrossRef  Google Scholar 

  • Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A: Math. Theor. 40, 9717–9720 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Gros, C.: Complex and adaptive dynamical systems: a primer. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  • Jung, T., Polani, D., Stone, P.: Empowerment for continuous agent-environment systems. Adaptive Behaviour 19(1), 16–39 (2011)

    CrossRef  Google Scholar 

  • Klyubin, A.S., Polani, D., Nehaniv, C.L.: All else being equal be empowered. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 744–753. Springer, Heidelberg (2005a)

    CrossRef  Google Scholar 

  • Klyubin, A.S., Polani, D., Nehaniv, C.L.: Empowerment: a universal agent-centric measure of control. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 128–135. IEEE (2005b)

    Google Scholar 

  • Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42(1-3), 12–37 (1990)

    CrossRef  MathSciNet  Google Scholar 

  • Lazar, A., Pipa, G., Triesch, J.: The combination of STDP and intrinsic plasticity yields complex dynamics in recurrent spiking networks. In: ESANN 2006 Proceedings - 14th European Symposium on Artificial Neural Networks Bruges, pp. 647–652 (2006)

    Google Scholar 

  • Linsker, R.: Self-organization in a perceptual network. Computer 21(3), 105–117 (1988)

    CrossRef  Google Scholar 

  • Lizier, J.T., Flecker, B., Williams, P.L.: Towards a synergy-based approach to measuring information modification. In: IEEE Symposium Series on Computational Intelligence (SSCI 2013) — IEEE Symposium on Artificial Life, Singapore. IEEE Press (April 2013)

    Google Scholar 

  • Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Local information transfer as a spatiotemporal filter for complex systems. Physical Review E 77(2), 026110 (2008)

    Google Scholar 

  • Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Information modification and particle collisions in distributed computation. Chaos 20(3), 037109 (2010)

    Google Scholar 

  • Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Local measures of information storage in complex distributed computation. Information Sciences 208, 39–54 (2012)

    CrossRef  Google Scholar 

  • Lungarella, M., Sporns, O.: Mapping information flow in sensorimotor networks. PLoS Comput. Biol. 2(10), e144 (2006)

    Google Scholar 

  • Martius, G., Der, R., Ay, N.: Information driven self-organization of complex robotic behaviors. PLoS ONE 8(5), e63400 (2013)

    Google Scholar 

  • Piraveenan, M., Prokopenko, M., Zomaya, A.Y.: Local assortativity and growth of Internet. European Physical Journal B 70(2), 275–285 (2009)

    CrossRef  Google Scholar 

  • Piraveenan, M., Prokopenko, M., Zomaya, A.Y.: Assortative mixing in directed biological networks. IEEE/ACM Trans. Comput. Biology Bioinform. 9(1), 66–78 (2012)

    CrossRef  Google Scholar 

  • Polani, D.: Information: currency of life? HFSP Journal 3(5), 307–316 (2009)

    CrossRef  Google Scholar 

  • Polani, D., Prokopenko, M., Yaeger, L.S.: Information and self-organization of behavior. Advances in Complex Systems (ACS) 16(02) (2013)

    Google Scholar 

  • Polani, D., Sporns, O., Lungarella, M.: How information and embodiment shape intelligent information processing. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of Aritficial Intelligence. LNCS (LNAI), vol. 4850, pp. 99–111. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  • Prokopenko, M.: Guided self-organization. HFSP Journal 3(5), 287–289 (2009)

    CrossRef  Google Scholar 

  • Prokopenko, M., Boschetti, F., Ryan, A.J.: An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)

    CrossRef  MathSciNet  Google Scholar 

  • Prokopenko, M., Gerasimov, V., Tanev, I.: Evolving spatiotemporal coordination in a modular robotic system. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 558–569. Springer, Heidelberg (2006a)

    CrossRef  Google Scholar 

  • Prokopenko, M., Gerasimov, V., Tanev, I.: Measuring spatiotemporal coordination in a modular robotic system. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Proceedings of the 10th International Conference on the Simulation and Synthesis of Living Systems (ALifeX), Bloomington, Indiana, USA, pp. 185–191. MIT Press (2006b)

    Google Scholar 

  • Prokopenko, M., Lizier, J.T., Obst, O., Wang, X.R.: Relating Fisher information to order parameters. Physical Review E 84(4), 041116 (2011)

    Google Scholar 

  • Prokopenko, M., Lizier, J.T., Price, D.C.: On thermodynamic interpretation of transfer entropy. Entropy 15(2), 524–543 (2013)

    CrossRef  MathSciNet  Google Scholar 

  • Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52(3), 1059–1069 (2010)

    CrossRef  Google Scholar 

  • Salge, C., Glackin, C., Polani, D.: Approximation of empowerment in the continuous domain. Advances in Complex Systems 16(1/2), 1250079 (2012)

    Google Scholar 

  • Schreiber, T.: Measuring information transfer. Physical Review Letters 85(2), 461–464 (2000)

    CrossRef  Google Scholar 

  • Still, S.: Information-theoretic approach to interactive learning. EPL (Europhysics Letters) 85(2), 28005–28010 (2009)

    CrossRef  Google Scholar 

  • Still, S., Sivak, D.A., Bell, A.J., Crooks, G.E.: Thermodynamics of prediction. Phys. Rev. Lett. 109, 120604 (2012)

    CrossRef  Google Scholar 

  • Tishby, N., Polani, D.: Information theory of decisions and actions. In: Cutsuridis, V., Hussain, A., Taylor, J. (eds.) Perception-Action Cycle: Models, Architecture and Hardware, pp. 601–636. Springer (2011)

    Google Scholar 

  • Touchette, H., Lloyd, S.: Information-theoretic limits of control. Phys. Rev. Lett. 84, 1156 (2000)

    CrossRef  Google Scholar 

  • Triesch, J.: A gradient rule for the plasticity of a neuron’s intrinsic excitability. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 65–70. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  • Williams, P.L., Beer, R.D.: Information dynamics of evolved agents. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 38–49. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  • Wissner-Gross, A.D., Freer, C.E.: Causal entropic forces. Phys. Rev. Lett. 110, 168702 (2013)

    CrossRef  Google Scholar 

  • Yaeger, L.S.: Identifying neural network topologies that foster dynamical complexity. Advances in Complex Systems (ACS) 16(02) (2013)

    Google Scholar 

  • Zahedi, K., Ay, N., Der, R.: Higher coordination with less control – A result of information maximization in the sensorimotor loop. Adaptive Behavior 18(3-4), 338–355 (2010)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Prokopenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prokopenko, M., Polani, D., Ay, N. (2014). On the Cross-Disciplinary Nature of Guided Self-Organisation. In: Prokopenko, M. (eds) Guided Self-Organization: Inception. Emergence, Complexity and Computation, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53734-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53734-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53733-2

  • Online ISBN: 978-3-642-53734-9

  • eBook Packages: EngineeringEngineering (R0)