Eleven Coordinate Systems

  • Parry Moon
  • Domina Eberle Spencer

Abstract

The book is limited to orthogonal coordinate systems in euclidean 3-space. Skew coordinate systems do not allow separation of variables and will not be considered.

Keywords

Acoustics Coord Prolate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [l]
    LamÉ, G.: Leçons sur les coordonnées curvilignes et leurs diverses applications. Paris: Mallet-Bachelier 1859.Google Scholar
  2. [2]
    Darboux, G.: Sur une classe remarquable de courbes et de surfaces algébriques. Paris 1896.Google Scholar
  3. Darboux, G.: Leçons sur les systemes orthogonaux et les coordonnées curvilignes. Paris: Gauthier-Villars 1910.MATHGoogle Scholar
  4. MÜller, E.: Die verschiedenen Koordinatensysteme. Encyk. Math. Wissen., Bd.3. S. 596. Leipzig: B. G. Teubner 1907–1910.Google Scholar
  5. [3]
    Eisenhart, L. P.: Separable systems of STÄCKEL. Ann. Math. 35, 284 (1934).MathSciNetCrossRefGoogle Scholar
  6. Eisenhart, L. P.: Stäckel systems in conformal euclidean space. Ann. Math. 36, 57 (1935).MathSciNetMATHCrossRefGoogle Scholar
  7. Robertson, H. P.: Bemerkung über separierbare Systeme in der Wellenmechanik. Math. Ann. 98, 749 (1927).CrossRefGoogle Scholar
  8. [4]
    BÓcher, M.: Über die Reihenentwickelungen der Potentialtheorie. Leipzig: B. G. Teubner 1894.MATHGoogle Scholar
  9. [5]
    Moon, P., and D. E. SPENCER: Foundations of electrodynamics. Princeton, N. J.: D. Van Nostrand Co. 1960.Google Scholar
  10. [6]
    Moon, P., and D. E. SPENCER: The meaning of the vector Laplacian. J. Franklin Inst. 256, 551 (1953).MathSciNetCrossRefGoogle Scholar
  11. [7]
    Moon, P., and D. E. SPENCER: Field theory for engineers, Chap. 11. Princeton, N. J.: D. Van Nostrand Co. 1961.Google Scholar
  12. [8]
    StÄckel, P.: Über die Integration der Hamilton-Jacobischen Differentialgleichung mittels Separation der Variabelen. Habil.-Schr. Halle 1891.Google Scholar
  13. StÄckel, P.: Sur une classe de problèmes de dynamique. C.R., Acad. Sci., Paris 116, 485 (1893).MATHGoogle Scholar
  14. StÄckel, Über die Integration der Hamiltonschen Differentialgleichung mittels Separation der Variabelen. Math. Ann. 49, 145 (1897).MathSciNetCrossRefGoogle Scholar
  15. [9]
    Moon, P., and D. E. SPENCER: Separability conditions for the Laplace and Helmholtz equations. J. Franklin Inst. 253, 585 (1952).MathSciNetCrossRefGoogle Scholar
  16. Moon, P., Theorems on separability in Riemannian n-space. Amer. Math. Soc. Proc. 3, 635 (1952).MATHGoogle Scholar
  17. Moon, P., Recent investigations of the separation of LAPLACE’S equation. Amer. Math. Soc. Proc. 4, 302 (1953).Google Scholar
  18. Moon, P., Separability in a class of coordinate systems. J. Franklin Inst. 254, 227 (1952).MathSciNetCrossRefGoogle Scholar
  19. [10]
    Blaschke, W.: Eine Verallgemeinerung der Theorie der konfocalen.4. Math. Z. 27, 653 (1928).MathSciNetMATHCrossRefGoogle Scholar
  20. Levi-Civita, T.: Sulla integrazione della equazione di Hamilton- Jacobi per separazione di variabili. Math. Ann. 59, 383 (1904).MathSciNetCrossRefGoogle Scholar
  21. Turriere, E.: Démonstration du théorème de STÄCKEL par l’élimination dutemps entre les équations de LAGRANGE. L’enseignement Math. 22, 337 (1923).MATHGoogle Scholar
  22. Fogei.Sang, W.: Eine Verallgemeinerung der konfokalen Flächen zweiter Ordnung. Math. Z. 35, 25 (1932).MathSciNetCrossRefGoogle Scholar
  23. Bateman, H.: Partial differential equations of mathematical physics. Cambridge: Cambridge Univ. Press 1932; New York: Dover Publications 1944.Google Scholar
  24. Byerly, W. E.: Fourier series and spherical, cylindrical, and ellipsoidal harmonics. Boston: Ginn & Co. 1893; New York: Dover Publications 1959.Google Scholar
  25. Churchill, R. V. Fourier series and boundary value problems. New York: McGraw-Hill Book Co. 1941.Google Scholar
  26. Courant, R., u. D. HILBERT: Methoden der mathematischen Physik. Berlin: Springer 1931.CrossRefGoogle Scholar
  27. Frank, P., u. R. v. MIsas: Die Differential-und Integralgleichungen der Mechanik und Physik, 8th edit. of RIEMANN-WEBER. Braunschweig: Vieweg & Sohn 1930.Google Scholar
  28. Hildebrand, F. B.: Advanced calculus for engineers. Englewood Cliffs, N. J.: Prentice-Hall 1949.Google Scholar
  29. Jeffreys, H., and B. S. JEFFREYS: Methods of mathematical physics. Cambridge: Cambridge Univ. Press 1950.MATHGoogle Scholar
  30. Kellogg, O. D.: Foundations of potential theory. Berlin: Springer 1929; New York: Dover Publications 1953.Google Scholar
  31. Lense, J.: Reihenentwicklungen in der mathematischen Physik. Berlin: Walter de Gruyter 1933.Google Scholar
  32. Maxwell, J. C.: Electricity and magnetism. London: Oxford Univ. Press 1904; first edit. 1873.Google Scholar
  33. Moon, P., and D. E. SPENCER: Field theory for engineers. Princeton, N. J.: D. Van Nostrand Co. 1961.Google Scholar
  34. Morse, P. M., and H. FESHBACH: Methods of theoretical physics. New York: McGraw-Hill Book Co. 1953.MATHGoogle Scholar
  35. Murnaghan, F. D.: Introduction to applied mathematics. New York: John Wiley & Sons 1948.Google Scholar
  36. Smythe, W. R.: Static and dynamic electricity. New York: McGraw-Hill Book Co. 1950.Google Scholar
  37. Sommerfeld, A.: Partial differential equations in physics. New York: Academic Press 1949.MATHGoogle Scholar
  38. Stratton, J. A.: Electromagnetic theory. New York: McGraw-Hill Book Co. 41.Google Scholar
  39. Weber, E.: Electromagnetic fields. New York: John Wiley & Sons 1950.Google Scholar
  40. Webster, A. G.: Partial differential equations of mathematical physics. Leipzig: B. G. Teubner 1933.Google Scholar

Copyright information

© Springer-Verlag OHG / Berlin · Göttingen · Heidelberg 1961

Authors and Affiliations

  • Parry Moon
    • 1
  • Domina Eberle Spencer
    • 2
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.University of ConnecticutStorrsUSA

Personalised recommendations