Skip to main content

Zusammenfassung

Der Hauptabschnitt dieses Teils ist eine alphabetische Zusammenstellung der im Text zitierten Arbeiten. Es wurde keineswegs eine vollständige Bibliographie des ganzen Gebietes angestrebt. Die Literatur dieses Gebietes der Mechanik und Physik ist nunmehr so umfassend, daß eine solche Bibliographie mehrere Tausend Arbeiten umfassen würde.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-642-52432-5_11/10.1007/978-3-642-52432-5_11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Marin, J., A survey of recent research on creep of engineering materials, Appl. Mech. Rev. 4 (1951), 633/634.

    Google Scholar 

  • Odqvist, F. K. G., Recent advances in theories of creep of engineering materials, Appl. Mech. Rev. 7 (1954), 517–519.

    Google Scholar 

  • Hoff, N. J., High temperature effects in aircraft structures, Appl. Mech. Rev. 8 (1955), 453–456.

    Google Scholar 

  • Finnie, I., Stress analysis in the presence of creep, Appl. Mech. Rev. 13 (1960), 705–712.

    Google Scholar 

A. Zusammenfassende Arbeiten über Kriechfestigkeit

  • Finnie, I., und Heller, W. R., Creep of engineering materials, New York: Mc Graw Hill 1959.

    Google Scholar 

  • High temperature effects in aircraft structures; Herausgeber N. J. Hoff, London: Pergamon Press 1958.

    Google Scholar 

  • Kacuanov, L. M., Theorie des Kriechens (in Russisch), Moskau: Gos. Izdat. Fis.-Mat. Lit. 1960.

    Google Scholar 

  • Malinin, N. N., Grundlagen für Berechnungen beim Kriechen (in Russisch), Moskau: Maschgiz 1948.

    Google Scholar 

  • Norton, F. H., Creep of steel at high temperatures, New York: Mc Graw Hill 1929.

    Google Scholar 

  • Smith, G. V., Properties of metals at elevated temperatures, New York: Mc Graw Hill 1950.

    Google Scholar 

  • Stanford, E. G., The creep of metals and alloys, London: Temple Press 1949.

    Google Scholar 

  • Sully, A. H., Metallic creep and creep resistant alloys, London: Butterworths 1949.

    Google Scholar 

  • Tapsell, H. J., Creep of metals, Oxford: University Press 1931.

    Google Scholar 

B. Zusammenfassende Arbeiten über Wärmespannunoen

  • Boley, B. A., und Weiner, J. H., Theory of thermal stresses, New York: Wiley & Sons 1960.

    Google Scholar 

  • Carslaw, H. S. und Jaeger, J. C., Conduction of heat in solids, Oxford: University Press 1947.

    Google Scholar 

  • Eckert, E, Einführung in den Wärme-und Stoffaustausch, 2. Aufl., Berlin: Springer 1959.

    Google Scholar 

  • Gatewood, B. E., Thermal stresses, New York: Mc Graw Hill 1957.

    Google Scholar 

  • Gröber, H., Err, S. und Grigull, U., Grundgesetze der Wärmeübertragung, 3. Aufl., Berlin: Springer 1955.

    Google Scholar 

  • Jacob, M., Heat transfer, I und II, New York: Wiley & Sons 1949, 1957.

    Google Scholar 

  • Melan, E., und Parkus, H., Wärmespannungen infolge stationärer Temperaturfelder, Wien: Springer 1953.

    Google Scholar 

  • Parkus, H., Instationäre Wärmespannungen, Wien: Springer 1959.

    Google Scholar 

C. Tagungs- und Konferenzberichte

  • Symposium on effect of temperature on the properties of metals, ASME und ASTM, Chicago 1931.

    Google Scholar 

  • Symposium on creep of nonferrous metals and alloys, Trans AIME 161 (1945), 401–477.

    Google Scholar 

  • Conference on strength of solids (Bristol), Proc. London 1948.

    Google Scholar 

  • Symposium on plasticity and creep of metals, ASTM Special Technical Publication 107, 1950.

    Google Scholar 

  • High temperature properties of metals, ASM, Ohio 1951.

    Google Scholar 

  • Symposium on strength and ductility of metals at elevated temperatures, ASTM Special Technical Publication 128, 1953.

    Google Scholar 

  • Symposium on strength at elevated temperatures, SESA, New York 1953.

    Google Scholar 

  • Creep and fracture of metals at high temperature, NPL 1954, Her Majestys Stationery Office, London 1956.

    Google Scholar 

  • Verformung und Fließen des Festkörpers, Madrid 1955, Herausgeber R. Grammel, Berlin: Springer 1956.

    Google Scholar 

  • Seminar on creep and recovery, ASM, Cleveland 1956.

    Google Scholar 

  • Dislocations and mechanical properties of crystals, Lake Placid 1956, Herausgeber: J. C. Fisher, W. G. Johnston, R. Thomson und T. Vreeland, Jr., New York: Wiley & Sons 1957.

    Google Scholar 

  • Colloquium on creep in structures, IUTAM, Stanford 1960, Herausgeber: N. J. Hoff, Berlin/Göttingen/Heidelberg: Springer 1962.

    Google Scholar 

D. Aufsätze und andere im Text zitierte Werke

  • Alfrey, T., Non-homogeneous stresses in viscoelastic media, QAM 2 (1944). 113–119.

    Google Scholar 

  • Andrade, E. N. da C., The viscous flow in metals and allied phenomena, Proc. Roy. Soc. London A 84 (1910).

    Google Scholar 

  • Arutyunian, N.H., A contact problem in the theory of creep, X Int. Congr. Appl. Mech., Stresa 1960.

    Google Scholar 

  • ASTM, Joint Research Committee on effect of temperature on properties of metals, Creep Data, 1938.

    Google Scholar 

  • Attia, Y. G., Fitzoeorge, D. und Pope, J. A., An experimental investigation of residual stresses in hollow cylinders due to the creep produced by thermal stresses, J Mech. Phys. Sol. 2 (1954), 238–258.

    Article  Google Scholar 

  • Austin, C. R., ST. John, C. R. und Lindsay, R. W., Creep properties of some binary solid solutions of ferrite, Trans AIME 162 (1945), 84–105.

    Google Scholar 

  • Avery, H. S., und Mathews, N. A., Cast heat resisting alloys of the 16 per cent chromium, 35 per cent nickel type, Trans. ASM 38 (1947), 956–1022.

    Google Scholar 

  • Bailey, R. W., Creep of steel under simple and compound stresses, and the use of high initial temperature in steam power plant, Trans. World Power Conference, Tokyo 1929, Bd. 3, 1089.

    Google Scholar 

  • Bailey, R. W., The utilization of creep test data in engineering design, Proc. Inst. Mech. Engrs. 131 (1935), 131–349.

    Article  Google Scholar 

  • Bailey, R. W., Creep relationships and their application to pipes, tubes, and cylindrical parts under internal pressure, Proc. Inst. Mech. Engrs. 164 (1951), 425–431.

    Article  Google Scholar 

  • Bergen, J. T. (Herausgeber), Viscoelasticity: Phenomenological aspects, New York: Academic Press 1960.

    Google Scholar 

  • Bernhardt, E.O. und Hanemann, H. Über den Kriechvorgang bei dynamischer Belastung und den Begriff der dynamischen Kriechfestigkeit, Z Metallk. 30 (1938), 401–409.

    CAS  Google Scholar 

  • Besseling, J. F., Theory of elastic, plastic and creep deformations, JAM 25 (1958), 529–536.

    Google Scholar 

  • Besseling, J. F., Investigation on transient creep in thick-walled tubes under radially symmetric loading, IUTAM Colloquium on creep in structures, Stanford 1960, Proc. Berlin: Springer 1962.

    Google Scholar 

  • Bieniek, M. P., and Freudenthal, A. M., Creep deformation and stresses in pressurized, long cylindrical shells, J Aerospace Sci 27 (1960), 763–766, 778.

    Google Scholar 

  • Bilby, B. A., Gardner, L. R. T. and Stroh, A. N., Continuous distribution of dislocations and the theory of plasticity IX Int. Congr. Appl. Mech., Brüssel 1956, Proc. 35–44.

    Google Scholar 

  • Bland, D. R., The theory of linear viscoelasticity, London: Pergamon 1960.

    Google Scholar 

  • Boyd, J., The relaxation of copper at normal and at elevated temperatures, Proc. ASTM 37 (1937), 218–232.

    Google Scholar 

  • Bragg, W. L., and Nye, J. F., A dynamical model of a crystal structure, Proc. Roy. Soc. London A 190 (1947), 474–481.

    Article  CAS  Google Scholar 

  • Brophy, G. R., and Furman, D. E., Cyclic temperature acceleration of strain in heat resistant alloys, Trans. ASM 30 (1942), 1115–1138.

    CAS  Google Scholar 

  • Burgers, J. M., and Burgers, W. G., Dislocations in crystal lattices, Kap. 6 in Rheology, I ( Herausgeber F. R. Email), New York: Academic Press 1956.

    Google Scholar 

  • Carlson, R. L.,und Manning, G. K., Investigation of compressive creep properties of aluminium columns at elevated temperatures, WADC Tech. Report 52–251, 1954.

    Google Scholar 

  • Coffin, L. F. Jr., Shepler, P. R. and Cherniak, G. S., Primary creep in the design of internal-pressure vessels, JAM 16 (1949), 229–241.

    CAS  Google Scholar 

  • Cottrell, A. H. and Bilby, B. A., Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. A 62 (1949), 49–62.

    Article  Google Scholar 

  • Cottrell, A. H., Dislocations and plastic flow in crystals, Oxford: Clarendon Press 1953.

    Google Scholar 

  • Davenport, C. C., Correlation of creep and relaxation properties of copper, JAM 5 (1938), A55 - A60.

    Google Scholar 

  • Davis, E. A., Creep of metals at high temperature in bending, JAM 5 (1938), A29 - A31.

    Google Scholar 

  • Davis, E. A., Creep and relaxation of oxygen-free copper, JAM 10 (1943), A101 - A105.

    Google Scholar 

  • Davis, E. A., Relaxation of a cylinder on a rigid shaft, JAM 27 (1960), 41–44.

    Google Scholar 

  • Dorn, J. E. and Tietz, T. E., Creep and stress-rupture investigations on some aluminium alloy sheet metals, Proc. ASTM 49 (1949), 815.

    CAS  Google Scholar 

  • Dorn, J. E., Some fundamental experiments on high temperature creep, J Mech. Phys. Sol. 3 (1954), 85–116.

    Article  Google Scholar 

  • Duwez, P., Materials for high temperature aircraft structures, Kap. 4 in High temperature effects in aircraft structures (Herausgeber N. J. Hoff), London: Pergamon 1958.

    Google Scholar 

  • Eirich, F. R., Rheology, theory and applications, 1 (1956), 2 (1958), 3 ( 1960 ), New York: Academic Press.

    Google Scholar 

  • Endres, W., Wärmespannungen beim Aufheizen dickwandiger Hohlzylinder, Brown Boveri Mitt. 45 (1958), Nr. 1.

    Google Scholar 

  • Fellows, J. A., Cook, E. and Avery, H. S., Precision in creep testing, Metals Technology (1942), TP No. 1443, 1–15.

    Google Scholar 

  • Findley, W. N., Creep characteristics of plastics, 1944 Symposium on plastics ASTM, 118.

    Google Scholar 

  • Findley, W. N., Derivation of a stress-strain equation from creep data for plastics, Proc. 1 US Nat. Congr. Appl. Mech. 1951, 595–602.

    Google Scholar 

  • Findley, W. N., Prediction of stress relaxation from creep tests on plastics, Proc. 3 US Nat. Congr. Appl. Mech. 1958, 521–526.

    Google Scholar 

  • Finnie, I., Creep buckling of tubes in torsion, J Aer. Sci. 25 (1958), 66–67.

    Google Scholar 

  • Finnie, I., A creep instability of thin-walled tubes under internal pressure, J Aerospace Sci. 26 (1959), 248/249.

    Google Scholar 

  • Fisher, J. C., Johnston, W. G., Thomson, R., und Vreeland, T. Jr., Dislocations and mechanical properties of crystals, New York: Wiley & Sons 1957.

    Google Scholar 

  • Fraeijs de Veubeiie, B., Creep buckling, Kap. 13 in High temperature effects in aircraft structures (Herausgeber N. J. HOFF), London: Pergamon 1958.

    Google Scholar 

  • Frenkel, J., Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper, Z Phys. 37 (1926), 572–609.

    Article  Google Scholar 

  • Freudenthal, A. M., Some time effects in structural analysis, VI Int. Congr. Appl. Mech. Paris 1946 (nie veröffentlicht).

    Google Scholar 

  • Freudenthal, A. M., The inelastic behaviour of engineering materials and structures, New York: Wiley & Sons 1950.

    Google Scholar 

  • Goodey, W. J., Creep deflexion and stress distribution in a beam, Airer. Engng. 30 (1958), 170–172.

    Google Scholar 

  • Green, L., Correlation of creep properties by a diffusion analogy, JAM 19 (1952), 320–326.

    CAS  Google Scholar 

  • Greenberg, H. J. et al, A comparison of flow and deformation theories in plastic torsion of a square cylinder, X Int. Congr. Appl. Mech., Stresa 1960.

    Google Scholar 

  • Hempel, M. und Tillmans, H. E., Verhalten des Stahles bei hohen Temperaturen unter wechselnder Zugbeanspruchung, Mitt. KW Inst. Eisenf. 18 (1936), 163–182.

    CAS  Google Scholar 

  • Hill, R., The mathematical theory of plasticity, Oxford: Clarendon Press 1950.

    Google Scholar 

  • Hill, R., New horizons in the mechanics of solids, J Mech. Phys. Sol. 5 (1956), 66–74.

    Article  Google Scholar 

  • Hoff, N. J., Necking and rupture of rods under tensile loads, JAM 20 (1953), 105–108.

    Google Scholar 

  • Hoff, N. J., Approximate analysis of structures in the presence of moderately large creep deformations, QAM 12 (1954 a), 49–55.

    Google Scholar 

  • Hoff, N. J., Buckling and stability, J Roy. Aer. Soc. 58 (1954b), 3–52.

    Google Scholar 

  • Hoff, N. J., Rapid creep in structures, J Aer. Sci. 22 (1955), 661–673.

    Google Scholar 

  • Hoff, N. J., Experiment and theory in the investigation of the behavior of structures at high temperatures, Aeronautical Engineering Review 15 (1956a), 39–47.

    Google Scholar 

  • Hoff, N. J., Creep buckling, Aer. Quart. 7 (1956 b), 1–20.

    Google Scholar 

  • Hoff, N. J., On primary creep, J Mech. Phys. Sol. 5 (1957a), 150/151.

    Google Scholar 

  • Hoff, N. J., Buckling at high temperature, J Roy. Aer. Soc. 61 (1957 b), 756–774.

    Google Scholar 

  • Hoff, N. J., Stress distribution in the presence of creep, Kap. 12 in High temperature effects in aircraft structures (Herausgeber N. J. HOFF), London: Pergamon 1958 a.

    Google Scholar 

  • Hoff, N. J., A survey of the theories of creep buckling, Proc. 3 US Nat. Congr. Appl. Mech. 1958b, 29–49.

    Google Scholar 

  • Hoff, N. J., Jahsman, W. E. und Nachbar, W., A study of creep collapse of a long circular cylindrical shell under uniform external pressure, J Aerospace Sci. 26 (1959), 663–669.

    Google Scholar 

  • Hoff, N. J., Mechanics applied to creep testing, Proc. SESA XVII: 2 (1960), 1–32.

    Google Scholar 

  • Hollomon, J. H., The mechanical equation of state, Trans. AIME 171 (1947), 535–545.

    Google Scholar 

  • Hopkins, H. G. und Prager, W., The load carrying capacities of circular plates, J Mech. Phys. Sol. 2 (1953), 1–13.

    Article  Google Scholar 

  • Hult, J., Critical time in creep buckling, JAM 22 (1955a), 432.

    Google Scholar 

  • Hult, J., Creep buckling, KTH, Inst. f. hâilfasthetslära Publ. Nr. 111, 1955b.

    Google Scholar 

  • Hult, J., Creep buckling of plane frameworks, KTH Handl. Nr. 136, 1959a.

    Google Scholar 

  • Hult, J., Creep buckling of plane frameworks, Durand Centennial Conference, Stanford 1959 b, Aeronautics and Astronautics (Herausgeber N. J. Hoff and W. G. Vincenti), London: Pergamon 1960.

    Google Scholar 

  • Hult, J., Oil canning problems in creep, IUTAM Colloquium on creep in structures, Stanford 1960, Proc. Berlin: Springer 1962.

    Google Scholar 

  • Ilvushin, A. A., Theorie kleiner elastisch-plastischen Verformungen (in Russisch), Prikl. Math. Mekh. 9 (1945), 207.

    Google Scholar 

  • Isaksson, A., Rabotnovs Theorie des Kriechens (in Schwedisch), KTH Inst. f. hâllfasthetslära Publ. Nr. 110, 1955.

    Google Scholar 

  • Isansson, A., Creep rates of excentrically loaded test pieces, KTH Handl. Nr. 110, 1957.

    Google Scholar 

  • Jenkins, C. H. M., Tapsell, H. J., Mellor, G. A. and Johnson, A. E., Some aspects of the behaviour of carbon and molybdenum steels at high temperatures, Trans. Chem. Eng. Congr. World Power Conf. London 1 (1936), 122–162.

    Google Scholar 

  • Johnson, A. E. and Tapsell, H. J., Creep under combined tension and torsion I—IV, Engineering 150 (1940), 24/25, 61–63, 104/105, 134, 164–166.

    Google Scholar 

  • Johnson, A. E., Proc. Inst. Mech. Engrs. 145 (1941), 210–220.

    Article  Google Scholar 

  • Johnson, A. E., The creep of a nominally isotropic aluminium alloy under combined stress systems at elevated temperatures, Metallurgia 40 (1949), 125–139.

    CAS  Google Scholar 

  • Johnson, A. E., Creep under complex stress systems at elevated temperatures, Proc. Inst. Mech. Engrs. 164 (1951), 432–447.

    Article  Google Scholar 

  • Johnson, A. E. and Frost, N. E., Fracture under combined stress creep conditions of a 0.5 per cent molybdenum steel, Engineer 191 (1951), 434–437.

    Google Scholar 

  • Johnson, A. E., Frost, N. E. and Henderson, J., Plastic stress and strain relations at high temperatures I—III, Engineer 199 (1955), 366–369, 403–405, 457–458.

    Google Scholar 

  • Johnson, A. E., Turbine disks for jet propulsion units I—V, Airer. Engng. 28 (1956), 187–195, 235–243, 265–272, 325–332, 348–356.

    Google Scholar 

  • Johnson, A. E., Henderson, J. and Mathur, V. D., Combined stress creep fracture of a commercially pure copper at 250 deg. cent., Engineer 202 (1956), 261–26. 5, 299–301.

    Google Scholar 

  • Johnson, A. E., Henderson, J. and Mathur, V. D., Creep under changing complex stress systems I—III, Engineer 206 (1958), 209–216, 251–257, 287–290.

    Google Scholar 

  • Johnson, A. E., Henderson, J. and Mathur, V. D., Complex stress creep fracture of an aluminium alloy, Aircr. Engng. 32 (1960)

    Google Scholar 

  • Johnson, A. E., Complex-stress creep of metals, Metallurgical Reviews 5 (1960), 447–506.

    Google Scholar 

  • Johnson, A. E., Henderson, J. and Khan, B., Behaviour of metallic thick-walled cylindrical vessels or tubes subject to high internal or external pressures at elevated temperatures, Inst. Mech. Engrs. London 1961.

    Google Scholar 

  • Kachanov, L. M., Zeitdauer des Bruchvorganges (in Russisch), Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk No. 8 (1958), 26–31.

    Google Scholar 

  • Kachanov, L. M., Rupture time under creep conditions, Festschrift MUsuuELISVILI (Problems of continuum mechanics), Soc. Ind. and Appl. Math., Philadelphia 1961, 306–310.

    Google Scholar 

  • Kemmipner, J. and Pohle, F. V., On the non-existence of a finite critical time for linear viscoelastic columns, J Aer. Sci. 20 (1933), 572/573.

    Google Scholar 

  • Kempner, J., Creep bending and buckling of linearly viscoelastic columns, NACA TN 3136, 1954a.

    Google Scholar 

  • Kempner, J., Creep bending and buckling of nonlinearly viscoelastic columns, NACA TN 3137, 1954 b.

    Google Scholar 

  • Kempner, J. and Patel, S. A., Creep buckling of columns, NACA TN 3138, 1954.

    Google Scholar 

  • Kiiosla, G. and Findley, W. N., Prediction of creep from tension tests at constant strain rate, IX Int. Congr. Appl. Mech., Brüssel 1956, Proc. 275–287.

    Google Scholar 

  • Kochendörfer, A., A theory of brittle and ductile fracture, based on the dynamic behaviour of dislocations and condensation of vacancies, NPL Symposium on creep and fracture of metals at high temperatures 1954, 263–284.

    Google Scholar 

  • Kröner, E., Kontinuumstheorie der Versetzungen and Eigenspannungen, Berlin: Springer 1958.

    Book  Google Scholar 

  • Larson, F. R. and Miller, J, A time-temperature relationship for rupture and creep stresses, Trans. ASME 74 (1952), 765–775.

    Google Scholar 

  • Lazan, B. J., Dynamic creep and rupture properties of temperature-resistant materials under tensile fatigue stress, Proc. ASTM 49 (1949), 757–787.

    CAS  Google Scholar 

  • Libove, C., Creep buckling of columns, J Aer. Sci. 19 (1952), 459–467.

    Google Scholar 

  • Libove, C., Creep-buckling analysis of rectangular section columns, NACA TN 2956, 1953.

    Google Scholar 

  • Lin, T. H., Creep deflection of viscoelastic plates under uniform edge compression, J Aer. Sc. 23 (1956), 883–887.

    Google Scholar 

  • Lunwrk, P., Elemente der technologischen Mechanik, Berlin: Springer 1909.

    Google Scholar 

  • Ma, B. M., A creep analysis of rotating solid disks, J Franklin Inst. 267 (1959), 149–165.

    Article  Google Scholar 

  • Mac Cullough, G. H., An experimental and analytical investigation of creep in bending, Trans. ASME 55 (1933), 55–60.

    Google Scholar 

  • Malinin, N. N., Stetiges Kriechen von kreisförmigen, symmetrisch belasteten Platten (in Russisch), Moskau vyss. tekh. uchil. Trudy 26 (1953), 26.

    Google Scholar 

  • Marin, J. and Zwissler, L. E., Creep of aluminium subjected to bending at normal temperature, Proc. ASTM 40 (1940), 937–946.

    CAS  Google Scholar 

  • Marin, J., Creep deflection in columns, J Appl. Phys. 18 (1947), 103–109.

    Article  Google Scholar 

  • Marin, J., Determination of the creep deflection of a rivet in double shear, JAM 26 (1959), 285–290.

    Google Scholar 

  • Mathauser, E. A. and Brooks, W. A. jr., An investigation of the creep lifetime of 75S-T6 aluminium-alloy columns, NACA TN 3204, 1954.

    Google Scholar 

  • Mc Comb, H. jr., Analysis of the creep behavior of a square plate loaded in edge compression, NACA TN 4398, 1958.

    Google Scholar 

  • Mc Vetty, P. G., Working stresses for high temperature service, Mech. Eng. 56 (1934), 149–154.

    Google Scholar 

  • Mellgren, S. A., Measuring accuracy in creep tests, I: Influence of eccentricity of load, WADC TR 59–78, I, 1959a.

    Google Scholar 

  • Mellgren, S. A., Measuring accuracy in creep tests, II: Influence of thermal stresses, WADC TR 59–78, II, 1959 b.

    Google Scholar 

  • Mellgren, S. A., Nonlinear thermal stresses in long cylinders with periodic surface temperature variation, X Int. Congr. Appl. Mech., Stresa 1960.

    Google Scholar 

  • Miller, J, Effect of temperature cycling on the rupture strength of some hightemperature alloys, ASTM Spec. Techn. Publ. Nr. 165, 1954.

    Google Scholar 

  • Moore, H. F., Betty, B. B. and Dollins, C. W., The creep and fracture of lead and lead alloys, Univ. of Ill. Eng. Exp. Station, Bull. No. 272, 1935.

    Google Scholar 

  • Mott, N. F. and Nabarro, F. R. N., Dislocation theory and transient creep, Strength of solids-report of 1947 Bristol Conference, The Physical Society, London 1948, 1–19.

    Google Scholar 

  • Murphy, G., Stress-strain-time characteristics for metals, ASTM Bull. No. 101 (1939), 19–22.

    Google Scholar 

  • Nadat, A., The influence of time upon creep. The hyperbolic sine creep law. S. Ttmgsnenko Anniversary Volume, New York: McMillan Co 1938.

    Google Scholar 

  • Nadat, A., Theory of flow and fracture of solids, New York: McGraw-Hill 1950.

    Google Scholar 

  • Neal, B. G., Die Verfahren der plastischen Berechnung biegesteifer Stahlstabwerke, Berlin: Springer 1958.

    Book  Google Scholar 

  • Oding, I A: Eine kritische Übersicht einiger Theorien des Kriechens bei Metallen (in Russisch), Probleme der Metallurgie des Kessel-und Turbinenwerkstoffe, Moskau: Mashgiz 1955.

    Google Scholar 

  • Oding, I. A. und Burduksxt, W. W., Der Beschädigungsprozeß in Metallen beim Kriechen, IUTAM Colloquium über Verformung und Fließen des Festkörpers 1955 (Herausgeber R GRAMMEL), Berlin: Springer 1956.

    Google Scholar 

  • Odqvist, F. K. G., Plasticitetsteori med tillämpningar, Vorlesungen in der Vereinigung Schwedischer Ingenieure und Architekten 1933, Stockholm: IVA 1934.

    Google Scholar 

  • Odqvist, F. K. G., Creep stresses in a rotating disk, IV Int. Congr. Appl. Mech. Cambridge, England 1934, Proc. 228/229.

    Google Scholar 

  • Odvtst, F. K. G., Theory of creep under the action of combined stresses with applications to high temperature machinery, IVA Handl. Nr. 141, 1936.

    Google Scholar 

  • Odqvist, F. K. G., Influence of primary creep on stresses in structural parts, VIII Int. Congr. Appl. Mech. Istanbul 1952, auch: KTH Handl. Nr. 66, Stockholm 1953.

    Google Scholar 

  • Odqvtst, F. K. G., Influence of primary creep on column buckling, JAM 21 (1954), 295.

    Google Scholar 

  • Odqvtst, F. K. G., Engineering theories of metallic creep, Symposium su la plasticita nella scienza delle costruzioni, Varenna 1956.

    Google Scholar 

  • Odqvtst, F. K. G. und Mellgren, S. A., Influence of non-homogeneity of the material on the results of creep tests, IUTAM Symposium on Non-homogeneity in elasticity and plasticity, Warschau 1958, Proc. (Herausgeber W. OLSZAK), London: Pergamon 1959, 303–310.

    Google Scholar 

  • Odqvist, F. K. G., Membrane creep of circular plates, Arkiv för fysik 16 (1959a), 113–118.

    Google Scholar 

  • Odqvist, F. K. G., Engineering theories of creep, Proc. V Congr. Theor. Appl. Mech. Roorkee 1959 b.

    Google Scholar 

  • Odqvist, F. K. G., Non-steady membrane creep of circular plates, Arkiv fOr fysik 16 (1960a), 527–531.

    Google Scholar 

  • Odqvist, F. K. G., Applicability of the elastic analogue in creep problems for plates, membranes and beams, IUTAM Colloquium on creep in structures, Stanford 1960b, Proc. Berlin: Springer 1962.

    Google Scholar 

  • Odqvist, F. K. G. und Hult, J., Some aspects of creep rupture, Arkiv för fysik 19 (1961), 379–382.

    Google Scholar 

  • Olsson, K. G., Einrichtungen und Verfahren zur genauen Ermittlung des Kriech-und Bruchverlaufs bei erhöhten Temperaturen unter gleichbleibender oder wechselnder Beanspruchung und Temperatur, Arch. Eisenhüttenw. 28 (1957), 679–685.

    CAS  Google Scholar 

  • Olszak, W. und Perzyna, P., Variational theorems in general visco-elasticity, Ing. Arch. XXVIII (1959), 246–250.

    Google Scholar 

  • Onat, E. T. und Wang, T. T., The effect of incremental loading on creep behavior of metals, IUTAM Colloquium on creep in structures, Stanford 1960, Proc. Berlin: Springer 1962.

    Google Scholar 

  • Onat, E. T. und Yüksel, H., On the steady creep of shells, Proc. III US Nat. Congr. Appl. Mech. 1958, 625–630.

    Google Scholar 

  • Orowan, E., Zur Kristallplastizität, Z Phys. 89 (1934), 605–659.

    Article  Google Scholar 

  • Orr, R. L., Sherby, O. D. und Dorn, J. E., Correlations of rupture data for metals at elevated temperatures, Trans. ASM 46 (1954), 113–128.

    CAS  Google Scholar 

  • Pandalai, K. A. V. und Patel, S. A., A note on shear centers of thin-walled closed sections in the presence of creep, PIBAL Rep. No. 487, 1959.

    Google Scholar 

  • Pao, Y. H. und Marin, J., Prediction of creep curves from stress-strain data, Proc. ASTM 52 (1952), 951.

    Google Scholar 

  • Pao, Y. H. und Marin, J., An analytical theory of the creep deformation of materials, JAM 20 (1953), 245–252.

    Google Scholar 

  • Patel, S. A., Kempner, J., Erickson, B. und Mobassery, A. H., Correlation of creep buckling tests with theory, NACA RM 56C20, 1956.

    Google Scholar 

  • Patel, S. A. und Pandalai, K. A. V., Torsion of cylindrical and prismatic bars in the presence of primary creep, PIBAL Rep. No. 417, 1958.

    Google Scholar 

  • Patel, S. A., Pandalai, K. A. V. und Venkatraman, B., Creep-stress of thin-walled structures, PIBAL Rep. No. 497, 1959.

    Google Scholar 

  • Patel, S. A., Venkatraman, B. und Hodge, P. G. jr., Torsion of cylindrical and prismatic bars in the presence of steady creep, JAM 25 (1958), 214–218.

    Google Scholar 

  • Patel, S. A., Venkatraman, B. und Vafakos, W. P., Effects of compressibility on creep, PIBAL Rep. No. 496, 1959.

    Google Scholar 

  • Patel, S. A. und Venkatraman, B., On the creep-stress analysis of some structures, IUTAM Colloquium on creep in structures, Stanford 1960, Proc. Berlin: Springer 1962.

    Google Scholar 

  • Phillips, A. J. und Smith, A. A. jr., Effect of time on tensile properties of hard-drawn copperwire, Proc. ASTM 36 (1936), 263–273.

    CAS  Google Scholar 

  • Phillips, k, The shear center in creep of thin-walled open cross sections, IUTAM Colloquium on creep in structures, Stanford 1960, Proc. Berlin: Springer 1962.

    Google Scholar 

  • Pian, T. H. H., Creep buckling of a curved beam under lateral loading, Proc. III US Nat. Congr. Appl. Mech. 1958, Proc. 649–654.

    Google Scholar 

  • Plan, T. H. H. und Chow, C. Y., Further studies of creep buckling of curved beam under lateral loading, Aeroelastic and Structures Research Lab. MIT, TR 25–28, 1958.

    Google Scholar 

  • Pian, T. H. H. und Johnson, R. I., On creep buckling of columns and plates, Aeroelastic and Structures Research Lab. MIT, TR 25–24, 1957.

    Google Scholar 

  • Polanyi, M., Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte, Z Phys. 89 (1934), 660–664.

    Article  CAS  Google Scholar 

  • Pomp, A. und Dahmen, A., Entwicklung eines abgekürzten Prüfverfahrens zur Ermittlung der Dauerstandfestigkeit von Stahl bei erhöhten Temperaturen, Mitt. KW Inst. Eisenf. 9 (1927), 38–52.

    Google Scholar 

  • Poritsky, H. und Fend, F. A., Relief of thermal stresses through creep, JAM 25 (1958), 589–597.

    CAS  Google Scholar 

  • Prager, W., Strain hardening under combined stresses, J Appl. Phys. 16 (1945), 837–840.

    Article  CAS  Google Scholar 

  • Prager, W., On the use of singular yield conditions and associated flow rules, JAM 20 (1953), 317–320.

    Google Scholar 

  • Prager, W. und Hodge, P. G. jr., Theorie ideal plastischer Körper, Wien: Springer 1954.

    Book  Google Scholar 

  • Prager, W., Probleme der Plastizitätstheorie, Basel: Birkhäuser 1955.

    Google Scholar 

  • Prager, W., Total creep under varying loads, J Aer. Sei. 24 (1957), 153–155.

    Google Scholar 

  • Prager, W., Einführung in die Kontinuumsmechanik, Basel: Birkhäuser 1961.

    Google Scholar 

  • Prandtl, L., Ein Gedankenmodell zur kinetischen Theorie der festen Körper, ZAMM 8 (1928), 85–106.

    Article  Google Scholar 

  • Rabotnov, G. N., Some problems of the theory of creep (in Russisch), Moskau 1948, Übersetzung: NACA TM 1353, 1953.

    Google Scholar 

  • Rabotnov, G. N., The effect of changing loads during creep, NPL Symposium on creep and fracture of metals at high temperatures 1954, 221–225.

    Google Scholar 

  • Rabotnov, G. N. und Shesterikov, S. A., Creep stability of columns and plates, J Mech. Phys. Sol. 6 (1957), 27–34.

    Article  Google Scholar 

  • Read, W. T. jr., Dislocations in crystals, New York: McGraw-Hill 1953.

    Google Scholar 

  • Reiner, M., A mathematical theory of dilatancy, Am. J. Math. 67 (1945), 350–362.

    Article  Google Scholar 

  • Reissner, E., On a variational theorem in elasticity, J. Math, a. Phys. 29 (1950), 90–95.

    Google Scholar 

  • Reissner, E., On a variational theorem for finite elastic deformations, J. Math. a. Phys. 32 (1953), 129–135.

    Google Scholar 

  • Richard, K., Bisherige Ergebnisse der Gemeinschaftsarbeit „Langzeitversuche“,. Mitt. der Vereinigung der Großkesselbesitzer, Heft 39 (1955), 836–842.

    Google Scholar 

  • Rimrott, F. P. J., Versagenszeit beim Kriechen, Ing. Arch. 27 (1959a), 169–178.

    Google Scholar 

  • Rimrott, F. P. J., Creep of thick-walled tubes under internal pressure considering large strains, JAM 26 (1959b), 271–275.

    Google Scholar 

  • Roberts, I., Prediction of relaxation of metals from creep data, Proc. ASTM 51 (1951), 811–831.

    CAS  Google Scholar 

  • Robinson, E. L., Effect of temperature variation on the long-time rupture strength of steels, Trans. ASME 74 (1952), 777–780.

    Google Scholar 

  • Ross, A. D., The effects of creep on instability and indeterminacy investigated by plastic models, The structural engineer 24 (1946), 413–428, Diskussion: 25 (1947), 179–200.

    Google Scholar 

  • Sanders, J. L. jr., Mccomb, H. G. und Schlechte, F. R., A variational theorem for creep with applications to plates and columns, NACA TN 4003, 1957.

    Google Scholar 

  • Schmidt, R., Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet, Ing. Arch. 3 (1932), 215–235.

    Google Scholar 

  • Seeger, A., Theorie der Gitterfehlstellen, Handbuch der Physik VII: 1 (1955), 383–665.

    Article  Google Scholar 

  • Seeger, A., Kristallplastizität, Handbuch der Physik VII: 2 (1958), 1–210.

    Article  Google Scholar 

  • Seitz, F., Koehler, J. S. und Orowan, E., Dislocations in metals, New York: AIME 1954.

    Google Scholar 

  • Sherby, O. D. und Dorn, J. E., Analysis of phenomenon of high temperature creep, Proc. SESA 12 (1954), 139–154.

    Google Scholar 

  • Sherby, O. D., Orr, R. L. und Dorn, J. E., Creep correlations of metals at elevated temperatures, J Metals, Trans. AIME (1954), 71–80.

    Google Scholar 

  • Shesterixov, S. A., Ein Variationsprinzip in der Theorie des Kriechens (in Russisch), Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk No. 2, (1957a), 122/123.

    Google Scholar 

  • Shesterikov, S. A., Über die Frage der Stabilität beim Kriechen (in Russisch), Avtorefer. Diss. Kand. Fiz.-Matem. Nauk, MGU, Moskau 1957b.

    Google Scholar 

  • Siebel, E., Hand buch der Werkstoffprüfung II, Berlin: Springer 1955, (A. POMP, Festigkeitsuntersuchungen bei hohen Temperaturen, 273–365 ).

    Google Scholar 

  • Smith, G. V., Miller, R. F. und Benz, W. G., Creep and creep-rupture testing, Proc. ASTM 47 (1947), 615–638.

    Google Scholar 

  • Soderberg, C. R., The interpretation of creep tests for machine design, Trans. ASME 58 (1936), 733–743.

    Google Scholar 

  • Sokolovskij, V. V., Theorie der Plastizität, Berlin: VEB Verlag Technik 1950/55.

    Google Scholar 

  • Stodola, A., Die Kriecherscheinungen, ein neuer technisch wichtiger Aufgabenkreis der Elastizitätstheorie, ZAMM 13 (1933), 143–146.

    Article  Google Scholar 

  • Sindström, E., Creep buckling of cylindrical shells, KTH Handl. Nr. 115, 1957.

    Google Scholar 

  • Tapsell, H. J. and Prosser, L. E., High-sensitivity creep testing equipment at NPL, Engng 137 (1934), 212–215.

    Google Scholar 

  • Taylor, G. I., The mechanism of plastic deformation in crystals, Proc. Roy. Soc. London A145 (1934), 362–415.

    Article  CAS  Google Scholar 

  • Tobolsky, A. V., Properties and structure of polymers, New York: Wiley & Sons 1960.

    Google Scholar 

  • Tsien, H. S., A generalization of ALFREY’S theorem for visco-elastic media, QAM 8 (1950), 104–106.

    Google Scholar 

  • Venkatraman, B., Solutions of some problems in steady creep, PIBAL Rep. No. 402, 1957.

    Google Scholar 

  • Venkatraman, B. and Hodge, P. G. jr., Creep behavior of circular plates, J Mech. Phys. Sol. 6 (1958), 163–176.

    Article  Google Scholar 

  • Vicat, L. J., Note sur l’allongement progressif du fil de fer soumis à diverses tensions, Ann. ponts et chaussées, Mem. et Doc. 7 (1834), 40.

    Google Scholar 

  • Voorhees, H. R., Sliepcevitch, C. M. and Freeman, J. W., Thickwalled pressure vessels, Ind. Eng. Chem. 48 (1956), 872.

    CAS  Google Scholar 

  • Wahl, A. M., Sankey, G. O., Manjoine, M. J. and Shoemaker, E., Creep tests of rotating disks at elevated temperature and comparison with theory, JAM 21 (1954), 225–235 and 22 (1955), 152–155.

    Google Scholar 

  • Wahl, A. M., Analysis of creep in rotating disks based on the TRESCA criterion and associated flow rule, JAM 23 (1956), 231–238.

    Google Scholar 

  • Wahl, A. M., Stress distribution in rotating disks subjected to creep, JAM 24 (1957), 299–305.

    Google Scholar 

  • Wahl, A. M., Stress distribution on rotating disks and cylinders, JAM 25 (1958a), 243–250.

    Google Scholar 

  • Wahl, A. M., A comperative study of elevated temperature creep in long rotating cylinders based on various flow criteria, III US Nat. Congr. Appl. Mech. 1958 b, Proc. 685–691.

    Google Scholar 

  • Wahl, A. M., A comparison of flow criteria applied to elevated temperature creep of rotating disks with consideration of the transient condition, IUTAM Colloquium on creep in structures, Stanford 1960, Proc. Berlin: Springer 1962.

    Google Scholar 

  • Wallin, L., Large deflections of non-linear elastic rectangular plates, Arkiv för fysik 17 (1960), 89–95.

    Google Scholar 

  • Wang, A. J. and Prager, W., Thermal and creep effects in workhardening elastic-plastic solids, J Aer. Sci. 21 (1954), 343 /344, 360.

    Google Scholar 

  • Weber, W., Über die Elastizität der Seidenfasern, Ann Phys. Chem. (POGGENDORF) 34 (1835), 247.

    Article  Google Scholar 

  • Weissman, G. F. Pao, Y. H. and Marin, J., Prediction of creep under fluctuating stress and damping from creep under constant stress, Proc. II US Nat. Congr. Appl. Mech. 1954, 577–583.

    Google Scholar 

  • Zener, C. and Hollomon, J. H., Problems in non-elastic deformation of metals, J Appl. Phys. 17 (1946), 69–82.

    Article  CAS  Google Scholar 

  • Zhukov, A. M., Rabotnov, G. N. and Churnikov, F. S., Experimental testing of a few theories of creep (in Russisch), Ing. Sborn. 17 (1953), 163–170.

    Google Scholar 

  • Zschokke, H., Creeping results and recovery at high temperatures, Brown Boveri Rev. 25 (1938), 247–261.

    CAS  Google Scholar 

  • Zyczkowski, M., Geometrically non-linear creep buckling of bars, IUTAM Colloquium on creep in structures, Stanford 1960, Proc. Berlin: Springer 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Odqvist, F.K.G., Hult, J. (1962). Schrifttum. In: Kriechfestigkeit metallischer Werkstoffe. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52432-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52432-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52433-2

  • Online ISBN: 978-3-642-52432-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics