Discourse: Earth System Analysis — The Scope of the Challenge

  • H. J. Schellnhuber


Imagination is indispensable to scientific achievement, even more so to the emerging field of “Earth System Analysis” (Esa). Imagine ... that astronomers were warning us of a huge asteroid heading towards our planet. The collision was supposed to occur in some twenty years from now, but neither the date of the impact nor its site could be predicted with satisfactory precision at this point in time. From the already available approximate knowledge of the celestial maverick’s mass and orbital parameters it could be inferred, however, that the collision energy would correspond to an explosion of at least 10 gigatons of Tnt.


Earth System Management Episode Management Sequence Deterministic Chaos Critical Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Frequently Used Mathematical Symbols




Macro-state of the Anthroposphere A


Bundle of Paths


Global Brain


Coevolution Space


Class of paths (C[S])

𝕮 (P1P2)

Geo-cybernetic Corridor from P 1 to P 2


Domains and Subdomains


Overall Earth System


Manifold (Separating Domains in C)


Human Factor


Lagrange Function

M, M* M**

Pool of Control Options

M, M̃, M*,...

Management Sequences (M ∈ M)


Executive (Management) Component of Global Subject


Ecosphere (Nature)


Macro-state of the Ecosphere N




Path in C


Point in Coevolution Space (P ∈ C)


Trajectory in C


Scalar Quality Functional


Global Subject


Generalized Equilibrium

t, τ



Accessible Universe in C


Value System of Global Subject


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Abraham and J. E. Marsden. Foundations of mechanics. Benjamin/Cummings, Reading, Mass., 1977.Google Scholar
  2. 2.
    S. G. Akl. Parallel Computation: Models and Methods. Prentice Hall, Upper Saddle River, 1997.Google Scholar
  3. 3.
    J. Alcamo, editor. IMAGE 2.0: Integrated Modeling of Global Climate Change. Kluwer, Dordrecht, 1994. Reprinted from Journal of Water, Air and Soil Pollution, Vol. 76 Nos. 1–2, 1994.Google Scholar
  4. 4.
    J. Alcamo and G. J. J. Kreileman. Emission scenarios and global climate protection. Global Environmental Change, 6(4):305 pp., 1996.CrossRefGoogle Scholar
  5. 5.
    J. S. Andrade. Self-organized criticality in the El Nino Southern Oscillation. Physica A, 215(3):331 pp., 1995.CrossRefGoogle Scholar
  6. 6.
    V. I. Arnold. Instability of dynamical systems with several degrees of freedom. Soviet Mathematics — Doklady, 5:581 pp., 1964.Google Scholar
  7. 7.
    V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer, New York, 1978.Google Scholar
  8. 8.
    V. I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. Benjamin, New York, 1968.Google Scholar
  9. 9.
    P. Baccini and P. H. Brunner. Metabolism of the Anthroposphere. Springer, Berlin, 1991.Google Scholar
  10. 10.
    P. Bak. The Science of Self-Organized Criticality. Oxford University, Oxford, 1997.Google Scholar
  11. 11.
    P. Bak and K. Chen. Self-organized criticality. Scientific American, 264(1):46 pp., 1991.CrossRefGoogle Scholar
  12. 12.
    P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Physical Review Letters, 59(4):381 pp., 1987.CrossRefGoogle Scholar
  13. 13.
    W. L. Baker. Longterm response of disturbance landscapes to human intervention and global change. Landscape Ecology, 10(3): 143 pp., 1995.CrossRefGoogle Scholar
  14. 14.
    E. B. Barbier. Economics, Natural-Resource Scarcity and Development. Earthscan, London, 1989.Google Scholar
  15. 15.
    C. J. Barrow. Developing the Environment: Problems and Management Longman Scientific & Technical, Essex, 1995.Google Scholar
  16. 16.
    R. J. Baxter. Exactly Solved Models in Statistical Mechanics. Academic, London, 1990.Google Scholar
  17. 17.
    D. E. Bell, R. L. Keeney, and H. Raiffa, editors. Conflicting Objectives in Decisions. Wiley & Sons, London, 1977.Google Scholar
  18. 18.
    R. E. Bellmann. Dynamic Programming. Princeton University, Princeton, 1957.Google Scholar
  19. 19.
    C. H. Bennett. Demons, engines and the second law. Scientific American, 257(5):108 pp., 1987.CrossRefGoogle Scholar
  20. 20.
    P. Berge. Chaos and unusual attractors. Physikalische Blätter, 46(7):209 pp., 1990.Google Scholar
  21. 21.
    P. Bergé, Y. Pomeau, and C. Vidal. Order within Chaos. Wiley & Sons, New York, 1984.Google Scholar
  22. 22.
    H. O. Bergesen and G. Parmann, editors. Green Globe Yearbook 1996. Oxford University, Oxford, 1996.Google Scholar
  23. 23.
    M. V. Berry. Regular and irregular motion. In S. Jorna, editor, Topics in nonlinear dynamics. A tribute to Sir Edward Bullard, number 46 in AIP conference Proceedings, La Jolla, CA, 1978. American Institute of Physics.Google Scholar
  24. 24.
    K. Binmore. Essays on the Foundations of Game Theory. Basil Blackwell, Cambridge, 1990.Google Scholar
  25. 25.
    C. Blackburn, editor. Summary, Conclusions, and Recommendations, Global Change and the Human Prospect: Issues in Population, Science, Technology, and Equity, Research Triangle Park, NC, 1992. Sigma Xi, The Scientific Research Society.Google Scholar
  26. 26.
    P. M. Blaikie and H. Brookfield. Land Degradation and Society. Methuen, London, 1987.Google Scholar
  27. 27.
    D. Bohm. Quantum Theory. Prentice Hall, New York, 1951.Google Scholar
  28. 28.
    H.-R. Bork. Bodenerosion und Umwelt. Landschaftsgenese und Landschaftsökologie, No. 13. Technische Universität Braunschweig, Braunschweig, 1988.Google Scholar
  29. 29.
    H. Bossel. Deriving indicators of sustainable development. Environmental Modeling & Assessment, 1(4):193 pp., 1996.CrossRefGoogle Scholar
  30. 30.
    H. Bossel. Ecosystems and society: implications for sustainable development. World Futures, 47:143 pp., 1996.CrossRefGoogle Scholar
  31. 31.
    H. Breitmeier. Ozonschicht und Klima auf der globalen Agenda. Number 17 in Tübinger Arbeitspapiere zur internationalen Politik und Friedensforschung. Arbeitsgruppe Friedensforschung, Tübingen, 1992.Google Scholar
  32. 32.
    W. S. Broecker. Chaotic climate. Scientific American, 273(5):62 pp., 1995.CrossRefGoogle Scholar
  33. 33.
    L. R. Brown, C. Flavin, and S. Postel. Saving the Planet. Norton, New York, 1991.Google Scholar
  34. 34.
    N. Brown. The Strategic Revolution: Thoughts for the Twenty-First Century. Brassey’s, London, 1992.Google Scholar
  35. 35.
    M. J. Budyko and G. S. Golitsyn. Climatic Catastrophes. Springer, New York, 1988.CrossRefGoogle Scholar
  36. 36.
    M. Buitenkamp, H. Venner, and T. Warns. Sustainable Netherlands. Friends of the Earth Netherlands, Amsterdam, 1992.Google Scholar
  37. 37.
    H. B. Callen. Thermodynamics and an Introduction to Thermo statistics. Wiley, New York, 1985.Google Scholar
  38. 38.
    M. Carley and I. Christie. Managing Sustainable Development. University of Minnesota Press, Minneapolis, 1993.Google Scholar
  39. 39.
    M. A. Cassel-Gintz, M. K. B. Liideke, G. Petschel-Held, F. Reusswig, M. Plöchel, G. Lammel, and H. J. Schellnhuber. Fuzzy logic based global assessment of the marginality of agricultural land use. Climate Research, 8(2):135 pp., 1997.CrossRefGoogle Scholar
  40. 40.
    L. Cesari. Optimization Theory and Applications. Springer, New York, 1983.Google Scholar
  41. 41.
    G. J. Chaitin. Algorithmic Information Theory. Cambridge University, Cambridge, 1987.CrossRefGoogle Scholar
  42. 42.
    W. C. Clark. Managing planet earth. Scientific American, 261(3):46 pp., 1989.CrossRefGoogle Scholar
  43. 43.
    W. C. Clark and R. E. Munn, editors. Sustainable Development of the Biosphere. Cambridge University, Cambridge, 1986.Google Scholar
  44. 44.
    M. Claussen and A. Ganopolski. Klimasystemmodelle. Umwelt- und Klimabeeinflussung durch den Menschen. VDI Verlag, Düsseldorf, 1997.Google Scholar
  45. 45.
    W. R. Cline, editor. The Economics of Global Warming. Institute for International Economics, Washington DC, 1992.Google Scholar
  46. 46.
    C. W. Cobb and J. B. Cobb. The Green National Product — A Proposed Index of Sustainable Economic Welfare. University Press of America, Lanham, 1994.Google Scholar
  47. 47.
    R. Costanza, R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. O’Neill, J. Paruelo, R. Raskin, P. Sutton, and M. van den Belt. The value of the world’s ecosystem services and natural capital. Nature, 387(6630):253 pp., 1997.CrossRefGoogle Scholar
  48. 48.
    W. Cronon. Uncommon Ground. Towards Reinventing Nature. Norton, New York, 1995.Google Scholar
  49. 49.
    H. E. Daly. Toward some operational principles of sustainable development. Ecological Economics, 2:1 pp., 1990.CrossRefGoogle Scholar
  50. 50.
    H. E. Daly and J. B. Cobb. For the Common Good. Beacon Press, Boston, 1994.Google Scholar
  51. 51.
    H. E. Daly and K. N. Townsend, editors. Valuing the Earth. Economics, Ecology, Ethics. MIT Press, Cambridge, 1993.Google Scholar
  52. 52.
    G. B. Dantzig and A. F. Veinott Jr. Mathematics of the Decision Sciences. American Mathematical Society, Providence, 1968.Google Scholar
  53. 53.
    J. Darmstädter. Global Development and the Environment — Perspectives on Sustainability. Washington D.C., 1992.Google Scholar
  54. 54.
    P. C. W. Davies. The Ghost in the Atom: A Discussion of the Mysteries of Quantum Physics. Cambridge University, Cambridge, 1986.Google Scholar
  55. 55.
    J. de Rosnay. L’homme symbiotique: regards sur le troisiéme millénaire. Seuil, Paris, 1995.Google Scholar
  56. 56.
    E. A. Desloge. Classical Mechanics. Wiley, New York, 1982.Google Scholar
  57. 57.
    B. d’Espagnat. Quantum theory and reality (reprint). Scientific American, 241(5):158 pp., 1979.CrossRefGoogle Scholar
  58. 58.
    D. Dörner. The Logic of Failure: Why things go wrong and what we can do to make them right. Metropolitan Books, New York, 1996.Google Scholar
  59. 59.
    H. Dowlatabadi. Adaptive management of climate change mitigation: a strategy for coping with uncertainty. Discussion paper, unpublished, Center for Integrated Study of the Human Dimensions of Global Change, Carnegie Mellon University, 1996.Google Scholar
  60. 60.
    H. Dowlatabadi and G. M. Morgan. Integrated assessment of climate change. Science, 259:1813–1814, 1993.CrossRefGoogle Scholar
  61. 61.
    B. Drossel and F. Schwabl. Self-organized criticality in a forest-fire model. Physica A, 191(l-4):47 pp., 1992.CrossRefGoogle Scholar
  62. 62.
    W. Ebeling, H. Engel, and H. Herzel. Selbstorganisation in der Zeit. Akademie-Verlag, Berlin, 1990.Google Scholar
  63. 63.
    M. Efinger and H. Breitmeier. Zur Theorie und Praxis der Verifikation einer globalen Klimakonvention. Number 3 in Berichte des Forschungszentrums Jülich. Arbeitsgruppe Friedensforschung, Jülich, 1992.Google Scholar
  64. 64.
    Environmental Impact Assessment Review (EIAR). Sustainable development. Environmental Impact Assessment Review, 12(1–2), 1992.Google Scholar
  65. 65.
    K. Falconer. Fractal Geometry. Mathematical Foundations and Applications. Wiley & Sons, Chichester, 1990.Google Scholar
  66. 66.
    S. Fankhauser. Valuing Climate Change. Earthscan, London, 1995.Google Scholar
  67. 67.
    J. C. Farman, B. G. Gardiner, and J. D. Shanklin. Large losses of total ozone in Antarctica reveal seasonal CO x /NO x interaction. Nature, 315(6016):207 pp., 1985.CrossRefGoogle Scholar
  68. 68.
    Federal Planning Office of Belgium (FPOB). Report of the workshop on indicators of sustainable development for decision-making, Ghent, 1995. Submitted to the UN Commission on Sustainable Development.Google Scholar
  69. 69.
    J. Feichter, U. Lohmann, and I. Schult. The atmospheric sulfur cycle in ECHAM-4 and its impacts on the shortwave radiation. Climate Dynamics, 13:235 pp., 1997.CrossRefGoogle Scholar
  70. 70.
    R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Integrals. McGraw-Hill, New York, 1965.Google Scholar
  71. 71.
    W. H. Fleming and R. W. Rishel. Deterministic and Stochastic Optimal Control. Springer, New York, 1975.Google Scholar
  72. 72.
    Food and Agriculture Organization of the United Nations (FAO). Lessons from the green revolution, 1996. http://www.FAO.Org/wfs/final/e/volume2/t06sum-e.htm. Google Scholar
  73. 73.
    J. W. Forrester. World dynamics. Wright-Allen, Cambridge, 1971.Google Scholar
  74. 74.
    Friends of the Earth Europe (FEE). Towards Sustainable Europe. Brussels, 1995.Google Scholar
  75. 75.
    B. Fritsch, S. Schmidheiny, and W. Seifritz. Towards an Ecologically Sustainable Growth Society. Physical Foundations, Economic Transitions, and Political Constraints. Springer, Berlin, 1994.Google Scholar
  76. 76.
    H. Gallee, J. P. van Ypersele, T. Fichefet, Marsiat C., C. H. Tricot, and A. Berger. Simulation of the last glacial cycle by a coupled sectorially averaged climate-ice sheet model. II. Response to insolation and CO2 variations. Journal of Geophysical Research, 97:15713 pp., 1992.CrossRefGoogle Scholar
  77. 77.
    H. Gallee, J. P. van Ypersele, T. Fichefet, C. H. Tricot, and A. Berger. Simulation of the last glacial cycle by a coupled sectorially averaged climate-ice sheet model. I. The climate model. Journal of Geophysical Research, 96:13139 pp., 1991.CrossRefGoogle Scholar
  78. 78.
    A. Ganopolski, V. Brovkin, M. Claussen, and V. Petoukhov. A study of biogeophysical feedbacks with a coupled climate-biosphere model CLIMBER-2. Annales Geophysicae, 15(II):352 pp., 1997.Google Scholar
  79. 79.
    A. Ganopolski, S. Rahmstorf, V. Petoukhov, and M. Claussen. Simulation of modern and glacial climates with a coupled climate model. Nature, 1997. Accepted.Google Scholar
  80. 80.
    A. Ganopolski and H. J. Schellnhuber. Influence of salinity on the structure of the thermohaline ocean circulation. Unpublished, 1997.Google Scholar
  81. 81.
    German Advisory Council on Global Change (WBGU), Annual Reports 1993–1997, English and German editions.Google Scholar
  82. 82.
    German Advisory Council on Global Change (WBGU). World in Transition: The Threat to Soils. Annual Report 1994, Economica, Bonn, 1995.Google Scholar
  83. 83.
    German Advisory Council on Global Change (WBGU). World in Transition: Ways Towards Global Environmental Solutions. Annual Report 1995, Springer, Berlin, 1996.Google Scholar
  84. 84.
    German Advisory Council on Global Change (WBGU). World in Transition: The Research Challenge. Annual Report 1996, Berlin, 1997. Springer.Google Scholar
  85. 85.
    German Advisory Council on Global Change (WBGU). World in Transition: Ways Towards Sustainable Management of Freshwater Resources. Annual Report 1997, Springer, Berlin, 1997. Forthcoming.Google Scholar
  86. 86.
    R. Gersonde, F. T. Kyte, U. Bleil, B. Diekmann, J. A. Flores, K. Gohl, G. Grahl, R. Hagen, G. Kuhn, F. J. Sierro, D. Völker, A. Abelmann, and J. A. Bostwick. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature, 390(6658):357 pp., 1997.CrossRefGoogle Scholar
  87. 87.
    E. H. Gilson. History of Christian Philosophy in the Middle Ages. Sheed and Ward, London, 1955.Google Scholar
  88. 88.
    H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, 1982.Google Scholar
  89. 89.
    R. Goodland, editor. Environmentally Sustainable Economic Development: Building on Brundtland. World Bank, Washington, 1991.Google Scholar
  90. 90.
    A. Gore. Earth in the Balance — Ecology and the Human Spirit. Houghton Mifflin Company, Boston, 1992.Google Scholar
  91. 91.
    J. R. Gribbin. In Search of Schrödinger’s Cat. Black Swan Books, London, 1991.Google Scholar
  92. 92.
    R. B. Griffiths. Correlations in separated quantum systems: a consistent history analysis of the EPR problem. American Journal of Physics, 55(1):11 pp., 1989.CrossRefGoogle Scholar
  93. 93.
    A. Grübler and A. McDonald. The drive to cleaner energy. Options, Winter 1995:8 pp., 1995.Google Scholar
  94. 94.
    H. Haken. Cooperative phenomena in systems far from thermal equilibrium and in non-physical systems. Reviews of Modern Physics, 47(1):67 pp., 1975.CrossRefGoogle Scholar
  95. 95.
    H. Haken. Advanced Synergetics. Springer, Berlin, 1983.Google Scholar
  96. 96.
    P. R. Halmos. Measure Theory. Springer, Berlin, 1974.Google Scholar
  97. 97.
    G. A. Harrison and D. Jeffries. Human biology in urban environments. Nature and Resources, 12(1):2 pp., 1976.Google Scholar
  98. 98.
    K. Hasselmann. Climate change — are we seeing global warming? Science, 276(5314):914 pp., 1997.CrossRefGoogle Scholar
  99. 99.
    K. Hasselmann. Multi-pattern fingerprint method for detection and attribution of climate change. Climate Dynamics, 13(9):601 pp., 1997.CrossRefGoogle Scholar
  100. 100.
    S. Hasselmann and S. Hasselmann. Multi-actor optimization of greenhouse gas emission paths using coupled integral climate response and economic models. In Earth System Analysis: Integrating Science for Sustainability. Springer, Berlin, 1998. Contribution in this proceedings.Google Scholar
  101. 101.
    HDP, editor. Global Change, Local Challenge, volume 1 and 2 of HDP Third Scientific Symposium 20–22 September 1995, Geneva, 1996. Human Dimensions of Global Environmental Change Programme. Report 8.Google Scholar
  102. 102.
    G. C. Hegerl, K. Hasselmann, U. Cubasch, J. F. B. Mitchell, E. Roeckner, R. Voss, and J. Waszkewitz. Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change. Climate Dynamics, 13(9):613 pp., 1997.CrossRefGoogle Scholar
  103. 103.
    F. Hole. Environmental instabilities and urban origins. In G. Stein, editor, Chiefdoms and Early States in the Near East: The Organizational Dynamics of Complexity, number 18 in Monographs in World Archaeology. Prehistory, Madison, 1994.Google Scholar
  104. 104.
    F. Hole. Evidence for mid-Holocene environmental change in the western Habur drainage, Northeastern Syria. In Third Millennium BC Abrupt Climate Change and Old World Social Collapse, New Haven, 1994. Yale University. NATO Advanced Research Workshop, September 1994.Google Scholar
  105. 105.
    C. S. Holling. Simplifying the complex: the paradigm of ecological function and structure. Journal of Operational Research, 30:139 pp., 1987.CrossRefGoogle Scholar
  106. 106.
    R. M. Hough, I. Gilmour, C. T. Pillinger, J. W. Arden, K. W. R. Gilkes, J. Yuan, and H. J. Milledge. Diamond and silicon carbide in impact melt rock from the Ries impact crater. Nature, 378:41 pp., 1995.CrossRefGoogle Scholar
  107. 107.
    Intergovernmental Panel on Climate Change (IPCC). Climate Change 1995. Working Group I: The Science of Climate Change. Working Group II: Impacts, Adaptations and Mitigation of Climate Change. Working Group III: Economic and Social Dimensions of Climate Change. Cambridge, 1996. University Press.Google Scholar
  108. 108.
    The International Geosphere-Biosphere Programme IGBP. Global Change. Report 28, IGBP in Action: Work Plan 1994–1998, Stockholm, 1994.Google Scholar
  109. 109.
    M. D. Intriligator. Mathematical Optimization and Economic Theory. Prentice-Hall, Englewood Cliffs, 1971.Google Scholar
  110. 110.
    U. Irmer. Personal communication, Federal Environmental Agency of Germany (UBA).Google Scholar
  111. 111.
    G. Julia. Sur l’iteration des fonctions rationelles. Journal Mathematique Pure et Appl, 8:47 pp., 1918.Google Scholar
  112. 112.
    A. Kandel. Fuzzy Mathematical Techniques with Applications. Addison-Wesley, Reading, 1986.Google Scholar
  113. 113.
    A. Kandel and G. Langholz, editors. Fuzzy Control Systems. CRC Press, Boca Raton, 1993.Google Scholar
  114. 114.
    I. Kant. Schriften zur Metaphysik und Logik. Suhrkamp, Frankfurt a. M., 1991. Reprint.Google Scholar
  115. 115.
    C. L. Karr and E. J. Gentry. Control of a chaotic system using fuzzy logic. In A. Kandel and G. Langholz, editors, Fuzzy Control Systems. CRC Press, Boca Raton, 1993.Google Scholar
  116. 116.
    H. G. Kastenholz, K. H. Erdmann, and M. Wolff, editors. Nachhaltige EntwicklungZukunftschancen für Mensch und Umwelt. Springer, Berlin, 1996.Google Scholar
  117. 117.
    J. F. Kasting, O. B. Toon, and J. B. Pollack. How climate evolved on the terrestrial planets. Scientific American, 258(2):90 pp., 1988.CrossRefGoogle Scholar
  118. 118.
    R. K. Kaufmann and D. I. Stern. Evidence for human influence on climate from hemispheric temperature relations. Nature, 388(6637):39 pp., 1997.CrossRefGoogle Scholar
  119. 119.
    Y. Kaya, N. Nakicenovic, W. D. Nordhaus, and F. L. Toth, editors. Costs, Impacts, and Benefits of CO 2 Mitigation, Laxenburg, 1993. IIASA.Google Scholar
  120. 120.
    D. L. Kelly and C. D. Kolstadt. The climate change footprint: Will we see it before it is upon us? In N. Nakicenovic, W. D. Nordhaus, R. Richels, and F. L. Toth, editors, Integrating Science, Economics, and Policy, Laxenburg, 1996. IIASA.Google Scholar
  121. 121.
    G. Kirsch. Neue Politische Ökonomie. Werner, Düsseldorf, 1993.Google Scholar
  122. 122.
    T. R. Knutson and S. Manabe. Impact of increased CO2 on simulated ENSO-like phenomena. Geophysical Research Letters, 8(21):2295 pp., 1994.CrossRefGoogle Scholar
  123. 123.
    E. Kreyszig. Introductory Functional Analysis with Applications. Wiley, New York, 1978.Google Scholar
  124. 124.
    E. Kreyszig. Statistische Methoden und ihre Anwendungen. Vandenhoek 8z Ruprecht, Göttingen, 1991.Google Scholar
  125. 125.
    W. E. Krumbein and H. J. Schellnhuber. Geophysiology of carbonates as a function of bioplanets. In V. Ittekkot, S. Kempe, W. Michaelis, and A. Spitzy, editors, Facets of Modern Biogeochemistry, Festschrift for E. T. Degens. Springer, Berlin, 1990.Google Scholar
  126. 126.
    F. T. Kyte, L. Zhou, and J. T. Wasson. New evidence on the size and possible effects of a latePliocene oceanic asteroid impact. Science, 241:63 pp., 1988.CrossRefGoogle Scholar
  127. 127.
    D. P. Landau. Theory of phase transitions beyond mean-field theory. In K. Binder and G. Cicotti, editors, Euroconference on Computer Simulation in Condensed Matter Physics Chemistry, Bologna, Italy, 1996. Italian Phys. Soc.Google Scholar
  128. 128.
    K. Lanius. Die Erde im Wandel Spektrum, Heidelberg, 1995.Google Scholar
  129. 129.
    M. Latif, T. P. Barnett, M. A. Cane, M. Fluegel, N. E. Graham, H. von Storch, J.-S. Xu, and S. E. Zebiak. A review of ENSO prediction studies. Climate Dynamics, 9:167 pp., 1994.CrossRefGoogle Scholar
  130. 130.
    E. B. Lee and L. Markus. Foundations of Optimal Control Theory. Wiley & Sons, New York, 1967.Google Scholar
  131. 131.
    S. M. Lélé. Sustainable development — a critical review. World Development, 19(607), 1991.CrossRefGoogle Scholar
  132. 132.
    S. Lern. Solaris. Faber and Faber, London, 1991.Google Scholar
  133. 133.
    R. J. M. Lempert, M. E. Schlesinger, and J. K. Hammitt. The impact of potential abrupt climate changes on near-term policy choices. Climatic Change, 26:351 pp., 1994.CrossRefGoogle Scholar
  134. 134.
    J. S. Lewis. Rain of Iron and Ice: The Very Real Threat of Comet and Asteroid Bombardment. Addison-Wesley, Reading, 1995.Google Scholar
  135. 135.
    A. J. Lichtenberg and M. A. Liebermann. Regular and Stochastic Motion, volume 38 of Applied Mathematical Sciences. Springer, New York, 1983.Google Scholar
  136. 136.
    D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University, Cambridge, 1995.CrossRefGoogle Scholar
  137. 137.
    E. N. Lorenz. Deterministic non-periodic flow. Journal of the Atmospheric Sciences, 20:130 pp., 1963.CrossRefGoogle Scholar
  138. 138.
    R. Loske. Zukunftsfähiges Deutschland: ein Beitrag zu einer global nachhaltigen Entwicklung. Birkhäuser, Basel, 1996. Wuppertal Institut für Klima, Umwelt, Energie.Google Scholar
  139. 139.
    R. Loske and W. Sachs. Industrial Societies & Sustainability: Proposals for Managing the Transition. Humanities, UK, 1997.Google Scholar
  140. 140.
    J. E. Lovelock. Gaia, The Practical Science of Planetary Medicine. Gaia Books, London, 1991.Google Scholar
  141. 141.
    L. J. Lundgren, editor. Views of Nature. Swedish Council for Planning and Coordination of Research, Stockholm, 1993.Google Scholar
  142. 142.
    A. M. Lyapunov. Probleme général de stabilité du mouvement. Annals of Mathematics Studies, 17, 1949. French translation of the original work of 1892.Google Scholar
  143. 143.
    S. Manabe and R. J. Stouffer. Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature, 364:215 pp., 1993.CrossRefGoogle Scholar
  144. 144.
    B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman, New York, 1991.Google Scholar
  145. 145.
    A. S. Manne. Hedging strategies for global carbon dioxide abatement: a summary of poll results, EMF 14 subgroup — analysis for decisions under uncertainty. In N. Nakicenovic, W. D. Nordhaus, R. Richels, and F. L. Toth, editors, Integrating Science, Economics, and Policy, Laxenburg, 1996. IIASA.Google Scholar
  146. 146.
    R. M. May and G. Sugihara. Applications of fractals in ecology. Trends in Ecology & Evolution, 5(3):79 pp., 1990.CrossRefGoogle Scholar
  147. 147.
    D. McKenzie-Mohr and M. Marien. Visions of Sustainability. Future. Butterworth-Heinemann, Oxford, 1994.Google Scholar
  148. 148.
    D. H. Meadows, D. L. Meadows, and J. Randers. Beyond the Limits. Chelsea Green Publishing Co., Post Mills, 1992.Google Scholar
  149. 149.
    D. L. Meadows, W. W. Behrens III, D. H. Meadows, R. F. Naill, J. Randers, and E. K. O. Zahn. Dynamics of Growth in a Finite World. Wright-Allen, Cambridge, MA, 1974.Google Scholar
  150. 150.
    G. A. Meehl, G. W. Branstator, and W. M. Washington. Tropical Pacific interannual variability and CO2 climate change. Journal of Climate, 6(1):42 pp., 1993.CrossRefGoogle Scholar
  151. 151.
    N. D. Mermin. Is the moon there when nobody looks? Reality and the quantum theory. Physics Today, 38(4):38 pp., 1985.CrossRefGoogle Scholar
  152. 152.
    M. Milankovitch. Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. In W. Köppen and R. Geiger, editors, Handbuch der Klimatologie. Gebrüder Borntraeger, Berlin, 1930.Google Scholar
  153. 153.
    B. Moldan and S. Billharz, editors. Sustainability-Indicators: Report of the Project on Indicators for Sustainable Development SCOPE 58. John Wiley, Chichester, 1997.Google Scholar
  154. 154.
    M. Montanari. Der Hunger und der Überfluß: Kulturgeschichte der Ernährung in Europa. Beck, München, 1995.Google Scholar
  155. 155.
    P. D. Moore, W. G. Chaloner, and P. A. Stott. Global Environmental Change. Blackwell Science, Oxford, 1996.Google Scholar
  156. 156.
    A. Mosier, W. J. Parton, D. Valentine, D. S. Ojima, D. S. Schimel, and O. Heinemeyer. CH4 and N2O fluxes in the Colorado shortgrass steppe: 2. Longterm impact of land use change. Global Biogeochemical Cycles, 11(1):29 pp., 1997.CrossRefGoogle Scholar
  157. 157.
    R. A. Muller and G. J. MacDonald. Glacial cycles and astronomical forcing. Science, 277:215 pp., 1997.CrossRefGoogle Scholar
  158. 158.
    R. E. Munn, J. W. M. La Riviére, and N. van Lookeren Campagne, editors. Policy Making in an Era of Global Environmental Change. Kluwer, Dordrecht, 1996.Google Scholar
  159. 159.
    N. Nakicenovic, W. D. Nordhaus, R. Richels, and F. L. Toth, editors. Integrative Assessment of Mitigation, Impacts, and Adaptation to Climate Change, Laxenburg, 1994. IIASA.Google Scholar
  160. 160.
    N. Nakicenovic, W. D. Nordhaus, R. Richels, and F. L. Toth, editors. Integrating Science, Economics, and Policy, Laxenburg, 1996. IIASA.Google Scholar
  161. 161.
    NASA. Earth System Science. NASA, Earth System Sciences Committee, Washington, 1988.Google Scholar
  162. 162.
    M. Nauenberg and H. J. Schellnhuber. Analytical evaluation of the multifractal properties of a Newtonian Julia set. Physical Review Letters, 62(16): 1807 pp., 1989.CrossRefGoogle Scholar
  163. 163.
    J. W. Negele. The mean-field theory of nuclear structure and dynamics. Reviews of Modern Physics, 54(4):913 pp., 1982.CrossRefGoogle Scholar
  164. 164.
    W. D. Nordhaus. An optimal transition path for controlling greenhouse gases. Science, 258:1315 pp., 1992.CrossRefGoogle Scholar
  165. 165.
    W. D. Nordhaus and J. Tobin. Is growth obsolete? In Economic Growth, number 46 in General Series, 96E, National Bureau of Economic Research, 1972. Columbia University.Google Scholar
  166. 166.
    J. B. Opschoor. Environment, Economy and Sustainable Development. Wolters-Noordhoff, Rotterdam, 1992.Google Scholar
  167. 167.
    J. B. Opschoor and L. Reijnders. Towards sustainable development indicators. In O. Kuik and H. Verbruggen, editors, In Search of Indicators of Sustainable Development. Kluwer Academic Publishers, Dordrecht, 1991.Google Scholar
  168. 168.
    J. B. Opschoor and J. v. d. Straaten. Sustainable development: an institutional approach. Ecological Economics, 7:203 pp., 1993.CrossRefGoogle Scholar
  169. 169.
    E. Ott, C. Grebogi, and J. A. Yorke. Controlling chaos. Physical Review Letters, 64(11):1196 pp., 1990.CrossRefGoogle Scholar
  170. 170.
    M. Papageorgiou. Optimierung: statische, dynamische, stochastische Verfahren für die Anwendung. Oldenbourg, München, 1991.Google Scholar
  171. 171.
    W. Pareto. Traité de sociologie générale. Payot, Lausanne, 1917.Google Scholar
  172. 172.
    J. A. Paulos. A Mathematician Reads the Newspaper. Penguin Mathematics. Penguin, London, 1995.Google Scholar
  173. 173.
    D. Pearce. Economic Values and the Natural World. Earthscan, London, 1993.Google Scholar
  174. 174.
    D. Pearce and R. K. Turner. Economics of Natural Resources and the Environment. Harvester Wheatsheaf, New York, 1990.Google Scholar
  175. 175.
    D. W. Pearce. Blueprint 2: Greening the World Economy. Earthscan, London, 1991.Google Scholar
  176. 176.
    D. W. Pearce, A. Markandya, and E. Barbier. Blueprint for a Green Economy. Earthscan, London, 1989.Google Scholar
  177. 177.
    H. O. Peitgen and P. H. Richter. The Beauty of Fractals. Springer, Berlin, 1988.Google Scholar
  178. 178.
    R. Penrose. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford, Oxford University, 1989.Google Scholar
  179. 179.
    I. Peterson. Newton’s Clock: Chaos in the Solar System. W. H. Freeman, New York, 1993.Google Scholar
  180. 180.
    G. Petschel-Held and H. J. Schellnhuber. The tolerable windows approach to climate control. In F. L. Toth, editor, Cost-benefit analyses of climate change: the broader perspective. Birkhäuser, Basel, 1997.Google Scholar
  181. 181.
    S. G. H. Philander. El Nino, La Nina and the Southern Oscillation. Academic, New York, 1989.Google Scholar
  182. 182.
    K. T. Pickering and L. A. Owen. An Introduction to Global Environmental Issues. Routledge, London, 1994.Google Scholar
  183. 183.
    D. Pitt and P. Samson, editors. Beyond the Biosphere: The Noosphere and Global Problems. Routledge, London, 1997.Google Scholar
  184. 184.
    H. Poincaré. Les methodés nouvelles de la mécanique céleste. Gauthier-Villars, Paris, 1899.Google Scholar
  185. 185.
    L. S. Pontryagin. The Mathematical Theory of Optimal Processes. Interscience, New York, 1962.Google Scholar
  186. 186.
    K. R. Popper. The Logic of Scientific Discovery. Routledge, London, 1992. Reprint.Google Scholar
  187. 187.
    I. C. Prentice, M. T. Sykes, and W. Cramer. A simulation model for the transient effects of climate change on forest landscapes. Ecological Modelling, 65(1–2):51 pp., 1993.CrossRefGoogle Scholar
  188. 188.
    S. Rahmstorf. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378:145 pp., 1995.CrossRefGoogle Scholar
  189. 189.
    Rat von Sachverständigen für Umweltfragen (RSU). Umweltgutachten 1994. Für eine dauerhaft-umweitgerechte Entwicklung, Statistisches Bundesamt, Wiesbaden, 1994.Google Scholar
  190. 190.
    J. Rawls. A Theory of Justice. Harvard University, Cambridge MA, 1971.Google Scholar
  191. 191.
    S. Rayner. Integrated Climate Change Assessment: Fairness and Equity Issues. An Overview. Battelle Northwest National Laboratory, Washington DC, 1997.Google Scholar
  192. 192.
    M. Redclift. Reflections on the “Sustainable Development” debate. International Journal of Sustainable Development and World Ecology, 1(1):3 pp., 1994.CrossRefGoogle Scholar
  193. 193.
    W. E. Rees. Defining “Sustainable Development”. University of British Columbia, Vancouver, 1989.Google Scholar
  194. 194.
    P. ReVelle and C. ReVelle, editors. The Global Environment. Securing a Sustainable Future. Jones and Bartlett, Boston, 1992.Google Scholar
  195. 195.
    P. H. Richter and H.-J. Scholz. Das ebene Doppelpendel. IWF Göttingen, 1985.Google Scholar
  196. 196.
    C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton, 1994.Google Scholar
  197. 197.
    F. J. Romeiras, C. Grebogi, E. Ott, and W. P. Dayawansa. Controlling chaotic dynamical systems. Physica D, 58(1–4):165 pp., 1992.CrossRefGoogle Scholar
  198. 198.
    N. Rosen. The dilemma of Einstein, Podolsky and Rosen, 60 years later. Institute of Physics Pub., Bristol, 1996.Google Scholar
  199. 199.
    J. Rotmans. Global Change and Sustainable Development: Towards an Integrated Conceptual Model. In H.-J. Schellnhuber and V. Wenzel, editors, Earth System Analysis: Integrating Science for Sustainability, Berlin, 1998. Springer. Contribution in this Proceedings.Google Scholar
  200. 200.
    J. Rotmans and H. J. M. de Vries. Perspectives on Global Change: The TARGETS Approach. Cambridge University, Cambridge, 1997.CrossRefGoogle Scholar
  201. 201.
    D. Ruelle. Chance and Chaos. Princeton University, New Jersey, 1991.Google Scholar
  202. 202.
    C. Safina. The world’s imperiled fish. Scientific American, 273(5):46 pp., 1995.CrossRefGoogle Scholar
  203. 203.
    P. A. Samuelson and W. D. Nordhaus. Economics. McGraw-Hill, New York, 1995.Google Scholar
  204. 204.
    P. Saunders. Introduction to Catastrophe Theory. Cambridge University, Cambridge, 1980.CrossRefGoogle Scholar
  205. 205.
    H. J. Schellnhuber. Global environmental change: the physics and the metaphysics. Global Environmental Change, 1997. Submitted.Google Scholar
  206. 206.
    H. J. Schellnhuber, M. A. Cassel-Gintz, J. Kropp, G. Lammel, W. Lass, R. Lienenkamp, C. Loose, M. K. B. Liideke, O. Moldenhauer, G. Petschel-Held, M. Plöchel, and F. Reusswig. Syndromes of global change. GAIA, 6(1):19 pp., 1997.Google Scholar
  207. 207.
    H. J. Schellnhuber and G. W. Yohe. Comprehending the economic and social dimensions of climate change by integrated assessment. Proceedings of the WCRP-Conference, Geneva, 1997. Forthcoming.Google Scholar
  208. 208.
    F. Schmidt-Bleek. Wieviel Umwelt braucht der Mensch? MIPS, das Maß für ökologisches Wirtschaften. Birkhäuser, Berlin, 1994.Google Scholar
  209. 209.
    H. Schmitz. Anaximander und die Anfänge der griechischen Philosophie. Bouvier, Bonn, 1988.Google Scholar
  210. 210.
    E. Schrödinger. Naturwissenschaften 23:807 pp., 1935,CrossRefGoogle Scholar
  211. 210a.
    translated in J. A. Wheeler and W. H. Zurek, editors, Quantum Theory and Measurement, Princeton University, Princeton, NJ, 1983.Google Scholar
  212. 211.
    I. Schult, J. Feichter, and W. F. Cooke. The effect of black carbon and sulfate aerosols on the global radiation budget. Journal of Geophysical Research, 1997. Accepted.Google Scholar
  213. 212.
    H. G. Schuster. Deterministic chaos: an introduction. VCH, Weinheim, 1988.Google Scholar
  214. 213.
    F. Schweitzer, editor. Self-Organization of Complex Structures: From Individual to Collective Dynamics. Gordon & Breach, London, 1997.Google Scholar
  215. 214.
    Scientific Committee on Problems of the Environment (SCOPE), Series No. 1–58, 1971–1997.Google Scholar
  216. 215.
    U. E. Simonis. Beyond Growth. Elements of Sustainable Development. Edition Sigma, Berlin, 1990.Google Scholar
  217. 216.
    U. E. Simonis. Weltumweltpolitik. Wissenschaftszentrum für Sozialforschung, Berlin, 1996.Google Scholar
  218. 217.
    Y. G. Sinai. Introduction to Ergodic Theory. Math. Notes 18. Princeton University, Princeton, 1976.Google Scholar
  219. 218.
    R. M. Solow. An Almost Practical Step to Sustainability. Resources for the Future, Washington, 1992.Google Scholar
  220. 219.
    J. H. Spangenberg. Ein zukunftsfähiges Europa. Towards sustainable Europe. Wuppertal Papers, Bd. 42. Wuppertal Institut für Klima — Umwelt — Energie, Wuppertal, 1995.Google Scholar
  221. 220.
    D. Sprinz and U. Luterbacher. International relations and global climate change. PIK Report 21, Potsdam Institute for Climate Impact Research (PIK), Potsdam, 1996.Google Scholar
  222. 221.
    N. Stehr and H. von Storch. Das soziale Konstrukt des Klimas, 1997.
  223. 222.
    I. Stewart. Does God play Dice? The Mathematics of Chaos. Basil Blackwell, Oxford, 1989.Google Scholar
  224. 223.
    T. F. Stocker, D. G. Wright, and L. A. Mysak. A zonally averaged coupled ocean-atmosphere model for paleoclimate studies. Journal of Climate, 5:773 pp., 1992.CrossRefGoogle Scholar
  225. 224.
    M. B. Stoff, J. F. Fanton, and R. H. Williams, editors. The Manhattan Project. Temple University, Philadelphia, 1991.Google Scholar
  226. 225.
    G. J. Sussman and J. Wisdom. Numerical evidence that the motion of Pluto is chaotic. Science, 241 (4864):433 pp., 1988.CrossRefGoogle Scholar
  227. 226.
    Y. M. Svirezhev and W. von Bloh. A minimal model of interaction between climate and vegetation: qualitative approach. Ecological Modelling, 92:89 pp., 1996.CrossRefGoogle Scholar
  228. 227.
    M. Tabor. Chaos and Integrability in Nonlinear Dynamics. John Wiley & Sons, New York, 1989.Google Scholar
  229. 228.
    F. L. Tòth. Practicing the future: implementing “the policy exercise concept”. Working Paper 86–23, IIASA, Laxenburg, 1986.Google Scholar
  230. 229.
    F. L. Tòth. Practicing the future. Part 2: Lessons from the first experiments with policy exercises. Working Paper 88–12, IIASA, Laxenburg, 1988.Google Scholar
  231. 230.
    F. L. Tòth. Policy exercises. Research Report 89–2, IIASA, Laxenburg, 1989.Google Scholar
  232. 231.
    F. L. Tòth, editor. Fairness Concerns in Climate Change, Proceedings of the International Workshop held at PIK, Potsdam, 1997. Forthcoming.Google Scholar
  233. 232.
    F. L. Tòth, T. Bruckner, H. Füssel, M. Leimbach, G. Petschel-Held, and H. J. Schellnhuber. The tolerable windows approach to integrated assessment. In Asia-Pacific Workshop on Integrated Assessment, Tokyo, 1997. IPCC. Forthcoming.Google Scholar
  234. 233.
    R. P. Turco. Earth under Siege: From Air Pollution to Global Change. Oxford University, Oxford, 1996.Google Scholar
  235. 234.
    E. Tziperman, H. Scher, S. E. Zebiak, and M. A. Cane. Controlling spatiotemporal chaos in a realistic El Niño prediction model. Physical Review Letters, 79:1034 pp., 1997.CrossRefGoogle Scholar
  236. 235.
    United Nations Climate Change Bulletin, Geneva, 1995. Interims Secretariat for the UN Climate Change Convention. Issue 7.Google Scholar
  237. 236.
    UNESCO. Man Belongs to the Earth: International Co-operation in Environmental Research. UNESCO’s Man and the Biosphere Programme. UNESCO, Paris, 1988.Google Scholar
  238. 237.
    United Nations. Indicators of Sustainable Development: Framework and Methodologies, United Nations, New York, 1996.Google Scholar
  239. 238.
    United Nations Conference on Environment and Development (UNCED), Rio de Janeiro. Earth Summit ’92, London, 1992. The Regency.Google Scholar
  240. 239.
    United Nations Development Programme (UNDP). Human Development Report 1990, Oxford University Press, New York, 1990.Google Scholar
  241. 240.
    U.S. National Committee (USNC). The United States Man and the Biosphere Program, U.S. MAB Secretariat, Washington, 1996.Google Scholar
  242. 241.
    D. G. Victor. The Montreal Protocol’s non-compliance procedure: lessons for making other international environmental regimes more effective. In W. Lang, editor, The Ozone Treaties and Their Influence on the Building of Environmental Regimes. Federal Ministry of Foreign Affairs, Vienna, 1996.Google Scholar
  243. 242.
    W. von Bloh, A. Block, and H. J. Schellnhuber. Self-stabilisation of the biosphere under global change: a tutorial geophysiological approach. Tellus, 49B:249 pp., 1997.Google Scholar
  244. 243.
    J. von Neumann. Theory of Games and Economic Behaviour. Princeton University, Princeton, 1944.Google Scholar
  245. 244.
    L. Walras. Elements d’économie politique pure ou theorie de la richesse sociale. Lausanne, 1874.Google Scholar
  246. 245.
    A. J. Watson and J. E. Lovelock. Biological homeostasis of the global environment: the parable of daisy world. Tellus, 35B:286 pp., 1983.Google Scholar
  247. 246.
    World Bank (WB), editor. Monitoring Environmental Progress, The World Bank, Washington, 1995.Google Scholar
  248. 247.
    WELT NEWS. Malaysia, 1996. Special supplement to the newspaper Frankfurter Allgemeine Zeitung, 23.12.1996, p.2, p.14.Google Scholar
  249. 248.
    R. Weterings and J. B. Opschoor. The Ecocapacity as a Challenge to Technological Development. Advisory Council for Research on Nature and Environment, Rijswijk, 1992.Google Scholar
  250. 249.
    P. Williamson and P. S. Liss. Understanding the earth system. In R. E. Munn, J. W. M. La Riviére, and N. van Lookeren Campagne, editors, Policy Making in an Era of Global Environmental Change. Kluwer, Dordrecht, 1996.Google Scholar
  251. 250.
    J. Wisdom. Meteorites may follow a chaotic route to Earth. Nature, 315(6022):731 pp., 1985.CrossRefGoogle Scholar
  252. 251.
    J. Wisdom, S. J. Peale, and F. Mignard. The chaotic rotation of Hyperion. Icarus, 58(2):137 pp., 1984.CrossRefGoogle Scholar
  253. 252.
    J. Wittig. Experimentelles zur Rayleigh-Bénard-Konvektion. Skript zum Ferienkurs der KFA Jülich, 28.2–12.3.1983, “Nichtlineare Dynamik in kondensierter Materie”.Google Scholar
  254. 253.
    World Climate Research Programme (WCRP). World Climate Research Programme, 1996. Google Scholar
  255. 254.
    World Commission on Environment and Development (WCED). Our Common Future (The Brundtland Commission), Oxford University, Oxford, 1989.Google Scholar
  256. 255.
    World Resources Institute (WRI). World Resources, Annual Reports 1986–1997.Google Scholar
  257. 256.
    World Resources Institute (WRI). World Resources 1992–93, Oxford, 1992. Oxford University Press.Google Scholar
  258. 257.
    Worldwatch Institute (WI). State of the world: Worldwatch Institute Reports on Progress Towards a Sustainable Society. Annual Reports 1984–1997.Google Scholar
  259. 258.
    Worldwatch Institute (WI). State of the world 1994. A Worldwatch Institute Report on Progress Towards a Sustainable Society, Norton, New York, 1994.Google Scholar
  260. 259.
    Z. Xia. Arnold diffusion in the elliptic restricted three body problem. Journal of Dynamics and Differential Equations, 5:219 pp., 1993.CrossRefGoogle Scholar
  261. 260.
    X. Xiao, D. W. Kicklighter, J. M. Melillo, A. D. McGuire, P. H. Stone, and A. P. Sokolov. Linking a global terrestrial biogeochemical model and a 2-dimensional climate model: implications for the global carbon budget. Tellus, 49B(1):18 pp., 1997.Google Scholar
  262. 261.
    L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338 pp., 1965.CrossRefGoogle Scholar
  263. 262.
    H.-J. Zimmermann. Fuzzy Set Theory and its Applications. Kluwer, Dordrecht, 1991.Google Scholar
  264. 263.
    X. Zolotas. Economic Growth and Declining Social Welfare. New York University, New York, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • H. J. Schellnhuber

There are no affiliations available

Personalised recommendations