Skip to main content

Solar Thermal Energy Cycle Based on Sulfur and Sulfide Oxidizing Bacteria

  • Chapter
Solar Thermal Energy Utilization
  • 157 Accesses

Summary

New solar energy technologies for the production of biomass for the purpose of synthesizing methane, hydrogen and proteins could be based on the solar generation of the inorganic energy source (Fe2+, metal sulfides) of chemoautotrophic bacteria (Thiobacilli). The resulting energy cycle is identical with the life sustaining processes coupled to black smokers in the deep sea with the difference that solar energy replaces geothermal energy. Progress and difficulties are discussed for energy and fuel generation on the basis of a solar driven sulfur cycle involving sulfate reduction using solar energy and sulfide oxidation by Thiobacillus ferrooxidans. The rate determining steps for catalysis of sulfate reduction and interfacial oxidation of sulfides are discussed. The potential advantages of this energy cycle for space exploration, terrestrial carbon dioxide fixation and technologies for energy and material production are outlined.

Zusammenfassung

Neue Solarenergie-Techniken zur Produktion von Biomasse, mit dem Zweck der Methan-, Wasserstoff-und Protein-Gewinnung, könnten basieren auf einer solar erzeugten anorganischen Energiequelle (Fe2+, Metallsulfide) für chemoautotrophe Bakterien (Thiobazillen). Der resultierende Energiezyklus ist identisch mit einem Prozeß in der Tiefsee, welcher dort als lebenserhaltender Prozeß gekoppelt an kleine Schlote (“black smoker”) abläuft; der Unerschied ist, daß in diesem Energiezyklus die Solarenegie die geothermische Energie ersetzt. Fortschritte und Schwierigkeiten werden beschrieben für Energie- und Brennstofferzeugung auf der Basis eines solar betriebenen Schwefel-Zyklus. Der Zyklus beinhaltet Sulfatreduktion durch solare Energie und die anschließende Oxidation der Sulfide durch Thiobacillus ferrooxidans. Die geschwindigkeitsbestimmenden Schritte für die katalytische Sulfatreduktion und die grenzflächengebundene Oxidation der Sulfide werden diskutiert. Die potentiellen Vorteile dieses Energiezyklus für die Raumfahrt, für terrestrische Kohledioxidfixierung und für Technologien zur Energieumwandlung und zur Materialproduktion werden angesprochen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tributsch, H., 1979, Nature 281, 555–556

    Article  Google Scholar 

  2. Corliss, J.B., Dyamond, J.R., Gordon, L.S., Edmond, J.M. Von Herzen, R.P., Ballard, R.D., Green, K., Williams, D.L. Bainbridge, A., Crane, K. and Van Andel, T.H. 1979. Science 203, 1073–1083

    Article  Google Scholar 

  3. Francheteau, J., Needham D., Juteau T. and Rangin, C., 1980: Naissance d’un ocèan, CYAMEX, Centre National pour l’Exploration des Oceans, I.S.B.N.2–902721–07–2

    Google Scholar 

  4. Bolton, R.J., Stricker, S.J. and Conolly, 1985, Nature 316, 495

    Article  Google Scholar 

  5. Balard, R.D. and Grassle, F. 1980, Return to oases of the deep, Nat. Geographic 156, 689–705

    Google Scholar 

  6. Kelly, D.P., Eccleston, M. and Jones, C.A., 1977, in Conf. bact. Leaching (eds. Schlegel, H.G. and Barnea, J.) Verlag Chemie, Göttingen

    Google Scholar 

  7. Parshin, G.S. et al., 1983, Soviet Electrochemistry 19, 204–205

    Google Scholar 

  8. Beck, F., 1972, Electrochim, Acta 17, 2317–2331

    Article  Google Scholar 

  9. Toland, W.G., 1960, Oxidation of organic compounds with aqueous sulfate, J. Am Chem. Soc. 82, 1911–1916

    Article  Google Scholar 

  10. Anisimov, L.A., 1978, Conditions of abiogenic reduction of sulfates in oil- and gas-bearing basins. Geokhimia, 11, 1692–1702

    Google Scholar 

  11. Kiyosu, Y., 1980, Chemical reduction and sulfur-isotope effects of sulfate by organic matter under hydrothermal conditions. Chem. Geol. 30, 47–56

    Article  Google Scholar 

  12. Shanks, W.C., Bischoff, J.L. and Rosenbauer, R.J., 1981, Seawater sulfate reduction and sulfur-isotope fractionation in basaltic systems: interaction with fayalite and magnetite at 200–350 °C. Geochim. Cosmochim. Acta 47, 1977–1995

    Article  Google Scholar 

  13. Giggenbach, W.F., 1974, Equilibria involving polysulfide ions in aqueous sulfide solutions up to 240°C, Inorg. Chem. 13, 1724–1730

    Article  Google Scholar 

  14. Ohmoto, H., Lasaga, A.C., 1982, Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems, Geochem. Cosmochem. Acta 46, 1727–1745

    Article  Google Scholar 

  15. Möller et al, personal communication

    Google Scholar 

  16. McDuff, R. and Edmond, J.M., 1982, On the fate of sulfate during hydrothermal circulation at mid-ocean ridges, Earth and Planetary Science Letters, 57, 117–132

    Article  Google Scholar 

  17. Alonso-Vante, N., Schubert, B., and Tributsch, H. 1989, Transition metal cluster materials for multi-electron transfer catalysis; Material Chemistry and Physics, 22, 281–307

    Article  Google Scholar 

  18. Schubert, B. and Tributsch, H. to be published

    Google Scholar 

  19. Murr, L.E., Torma, A.E. and Brierly, J.A. eds., 1978, Metallurgical applications of bacterial leaching and related microbiological phenomena, Academic Press, N.Y.

    Google Scholar 

  20. Karavaiko, G.I., Groudev, S.N., 1985, International Seminar on Modern Aspects of Microbiological Leaching of Metals from Ores. in Torma A.E. (ed) United Nations Environment Programme, USSR, Comission for UNEP, Centre of International Projects, GKNT, Moscow, 1–417

    Google Scholar 

  21. Tributsch, H. and Bennett, J.C., 1981, Semiconductor-electrochemical aspects of bacterial leaching I and II, J. Chem. Tech. Biotechnol. 31, 565–577 and 627–636

    Article  Google Scholar 

  22. Jedlicki, et al, 1986, Rusticyanin: Initial Studies on the Regulation of its Sythesis and Gene Location, Biotech, and appl. Bioeng., Vol.8, 342–350

    Google Scholar 

  23. Bärtels, C.-C Chatzitheodorou, G., Rodriguez-Leiva, M. and Tributsch, H., 1989, Novel technique for investigation and qantification of bacterial leaching by Thiobacillus ferrooxidans, Biotech.& Bioeng., Vol.33, 1196–1205

    Article  Google Scholar 

  24. Rodriguez-Leiva, M. and Tributsch, H., 1988, Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite, Arch. Microbiol. 149, 401–405

    Google Scholar 

  25. Tributsch, H., 1982, Solar bacterial biomass farm for space vehicles, Aeronautics & Astronautics 20, 66–68

    Google Scholar 

  26. Sublette, K.L., 1988; Production of microbial biomass protein from autotrophic fermentation of Hydrogen Sulfide, Biotech. & Bioeng. Vol.32, 408–409

    Article  Google Scholar 

  27. Smestad, G. et al.,1989; Formation of Semiconducting Iron Pyrite by Spray Pyrolysis; Solar Energy Materials, 18, 299–313

    Article  Google Scholar 

  28. Schaeffer, W.I., Umbreit, W.W., 1963, Phosphatidylinositol as a wetting agent in sulfur oxidation by Thiobacillus thiooxidans; J. Bcteriol.; Vol.85: 492–493

    Google Scholar 

  29. Reese, R.N. and Winge, D.R.; Sulfide Stabilizationof the Cadmiumg Glutamyl Peptide Complex of Schizosaccharomyces Pombe; The J. of Biol. Chem.; Vol.263, No26, 12832–12835

    Google Scholar 

  30. Dameron, C.T. et al.; 1989, Biosynthesis of Cadmium Sulphide Quantum Semiconductor Crystallites; Nature; Vol. 238, 596–597

    Article  Google Scholar 

  31. Barnes, H.L., Kullerud, G., 1961, Economic Geology, 56, 648–688

    Article  Google Scholar 

  32. Encyclopedia of Electrochemistry of the Elements (ed.A.J.Bard), Vol 4, p.276

    Google Scholar 

  33. Hamann, Vielstich, Elektrochemie II, Verlag Chemie, 142–155

    Google Scholar 

  34. Heinze, J. 1984, Angew. Chemie, 96, 823–840

    Article  Google Scholar 

  35. Bard, A.J., et al. (1985), Depts of Chemical Engineering and Chemistry, The University of exas, Austin, TX 78712, submitted to the Journal of Physical Chemistry, December 1985

    Google Scholar 

  36. Mc Donald, A.C., Fu-Ren F.Fan, Bard, A.J., 1986, J. Phys. Chem.90, 196–202

    Article  Google Scholar 

  37. Danielson, M., 1979, Corrosion 35, 200–204

    Google Scholar 

  38. Magar, L.J., Morris, P.E., 1976, Corrosion 32, 374–377

    Google Scholar 

  39. Agrawal, A.K., Staehle, R.W., 1977, Corrosion 33, 418–419

    Google Scholar 

  40. Mc Donald, D.D., 1978, Corrosion 34, 75–84

    Google Scholar 

  41. Boulégue, J., 1978, Geoch. Cosmoch. Acta 42, 1439–1445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bärtels, C.C., Tributsch, H. (1991). Solar Thermal Energy Cycle Based on Sulfur and Sulfide Oxidizing Bacteria. In: Becker, M., Funken, KH., Schneider, G. (eds) Solar Thermal Energy Utilization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52342-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52342-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53269-9

  • Online ISBN: 978-3-642-52342-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics