Skip to main content

Thermochemical H 2- Production with Sulfur-Iodine Process and Solar Energy Adaptation

  • Chapter
Solar Thermal Energy Utilization
  • 159 Accesses

Abstract

A thermochemical cycle for hydrogen production is a process in which water is used as a feedstock along with a non-fossil high temperature heat source to produce H2 and O2 as product gases. The water splitting process is accomplished through a closed loop sequence of chemical reaction steps in which the chemical reagents are continuously recycled and reused in the process with essentially no loss of material. Practical thermochemical cycles, as currently envisioned, require input temperatures of 1200K for the highest temperature chemical step, and operate at a thermal efficiency of about 50%. Here, the thermal efficiency is defined as the higher heating value of the H2 produced divided by thermal heat per mole of H2 delivered by the high temperature heat source. High temperature gas-cooled reactors have been considered as heat source for these cycles. Electrical energy for process equipment is required in addition to high temperature heat for operation of thermochemical hydrogen plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Krikorian, L. Brown, J. Norman Synfuels from fusion — using the tandem mirror reactor and a thermochemical cycle to production of hydrogen, November 1. 1982.

    Book  Google Scholar 

  2. Engels, H. Knoche, K. F. Vapor Pressures of the System HJ/H2O/J2 and H2, Int. J. Hydrogen Energy, Vol. 11, No. 11, 703–707, (1986)

    Article  Google Scholar 

  3. Konzeptstudie zur Wasserstofferzeugung mit einem solar betriebenen Schwefel-Jod-Prozeβ, Juli 1989, Lehrstuhl für Technische Thermodynamik der RWTH-Aachen.

    Google Scholar 

  4. Entwiklung und Analyse von Verfahrenskonzepten zur chemischen Energiespeicherung beim solarbetriebenen Schwefel-Jod-Prozeß zur Wasserstofferzeugung, Juni 1988, Lehrstuhl für technische Thermodynamik der RWTH-Aachen.

    Google Scholar 

  5. Brown, L. , Norman, J. , Synfuels from fusion — using the tandem mirror reactor and a thermochemical cycle to production of hydrogen, November 1. 1982.

    Google Scholar 

  6. Rowe, D. S. Synfuels from fusion — using the tandem mirror reactor and a thermochemical cycle to production of hydrogen, November 1. 1982.

    Google Scholar 

  7. “JANAF Thermochemical Tables”, DOW Chemical Company, Midland, Michigan, Sep. 30, 1977.

    Google Scholar 

  8. Winnacker, K. , Küchler, L. Chemische Technologie, Band 2, Anorganische Technologie II, Carl Hanser Verlag, München, 1970.

    Google Scholar 

  9. Lennartz, H. “ Experimentelle Untersuchungen zum Dampf-Gleichgewicht des Systems H2O + H2SO4”, Diplomarbeit an der RWTH-Aachen, Oktober 1980.

    Google Scholar 

  10. “ Wellman Lord in Europe”, Sulphur No. 195, March-April 1988.

    Google Scholar 

  11. Barin, I. Thermochemical Data of Pure Substances, VCH Verlaggesellschaft mbH, Weinheim, 1989.

    Google Scholar 

  12. Bosen, A. , Engels, H. , Description of the phase equilibrium of sulfuric acid with the NRTL-equation and a solvation model in a wide concentration and temperature range, Fluid Phase Equilibriq, 43, 1988.

    Google Scholar 

  13. Hammache, A. , Bilgen, E. , Critical evaluation of thermal efficiency and cost of HIGH TEMPERATURE SOLAR HEAT from central RECEIVER SYSTEM to use in thermochemical process prepared for the 10th technical workshop of IEA, 1987/07/27–29, Tokyo, Japan.

    Google Scholar 

  14. Chase, D. Plant cost vs capacity. Modern cost engeneering method and data. Chemical Engeneering, McGraw-Hill, New York, S. 225.

    Google Scholar 

  15. Jung, J. Aspekte der Vorausberechnung von Anlagekosten bei der Pro jektierung verfahrenstechnischerAnlagen. Chem. Technik, 12 (1983), S. 9-

    Google Scholar 

  16. Besenbruch, G. E. , McKorkle, K. H. Synfuels from fusion — using the tandem mirror reactor and a thermochemical cycle to production of hydrogen, November 1. 1982.

    Google Scholar 

  17. J. E. Funk The development status of solar thermochemical hydrogen production, Sept. 1987, SAND 86–8058.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knoche, K.F. (1991). Thermochemical H 2- Production with Sulfur-Iodine Process and Solar Energy Adaptation. In: Becker, M., Funken, KH., Schneider, G. (eds) Solar Thermal Energy Utilization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52342-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52342-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53269-9

  • Online ISBN: 978-3-642-52342-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics