Skip to main content

Abstract

Calcification affects the sheath of some coccoid and filamentous cyanobacteria during their life, under suitable environmental conditions. There is probably a link between sheath character, the environment and nucleation of CaCO3 within or upon the sheath. Calcification is thus extracellular and is influenced, but not fully controlled, by the cyanobacterium. It is promoted by thick sheaths, which provide favourable sites for CaCO3 nucleation, and by conditions favouring the physicochemical precipitation of CaCO3.

In the Recent, calcification is widespread in freshwater lakes and streams in limestone areas, but is virtually unknown in marine environments. However, calcification occurred quite widely in marine cyanobacteria during the Palaeozoic and Mesozoic. This could reflect temporal changes in oceanic carbonate chemistry.

Calcification results in (1) discrete skeletons; (2) skeletal stromatolites; (3) dendrolites and thrombolites; and (4) tufa stromatolites. Where calcification is uncommon the mucilaginous sheaths and felted masses ofcyanobacterial mats trap particulate sediment to form stromatolites which may be calcareous in composition, but which do not consist of calcified cyanobacteria in the sense of precipitation of CaCO3 on or within the sheath.

The main groups of fossil calcified cyanobacteria may be exemplified by the following genera: Angulocellularia, Epiphyton, Girvanella, Hedstroemia, Renalcis and Garwoodia/ Mitcheldeania, although some of these are not definitely known to by cyanobacteria. In addition there is a variety of fossil calcareous microproblematica which have been widely attributed to the cyanobacteria.

Well-defined and diverse calcified cyanobacteria first appear near the Precambrian-Cambrian boundary. Dendrolites and thrombolites composed of probable cyanobacteria are common in the Cambrian and Lower Ordovician. Subsequently, calcified cyanobacteria are generally less common in marine environments, although they reappear in relative abundance in the Upper Devonian and Lower Carboniferous, and in the Middle Triassic to mid-Cretaceous. A number of these fossils may be compared with modern analogues in freshwater lakes and streams, but the precise affinities of others are still uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. J. Sediment Petrol 37: 1163–1178

    Google Scholar 

  • Awramik SM (1971) Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science 174: 825–827

    Article  Google Scholar 

  • Babcock JA (1977) Calcareous algae, organic boundstones, and the genesis of the upper Capitan Limestone (Permian, Guadalupian), Guadalupe Mountains, West Texas and New Mexico. In: Hileman ME, Mazzullo SJ (eds) Upper Guadalupian facies, Permian Reef Complex, Guadalupe Mountains, New Mexico and West Texas. SEPM Permian Basin Sec Publ 77–16, PP 3–44

    Google Scholar 

  • Barattolo F (1983) Osservazioni su Triploporella steinmanni n. sp. (alghe verdi, Dasycladali) del Cretacico Messico. Boll Soc Nat Napoli 91: 1–35

    Google Scholar 

  • Bertrand-Sarfati J (1976) An attempt to classify late Precambrian stromatolite microstructures. In: Walter MR (ed) Stromatolites. Developments in sedimentology, vol 20. Elsevier, Amsterdam, pp 251–259

    Google Scholar 

  • Bertrand-Sarfati J, Pentecost A (1989) “Tussocky” microstructure in stromatolites: a biological event recorded in the Upper Proterozoic sediments of the West African craton. Terra Abstr 1(1):197

    Google Scholar 

  • Bless MJM, Bouckaert J, Bouzet Ph, Conil R, Cornet P, Fairon-Demaret M, Groessens E, Longerstaey PJ, Meessen JPMTh, Paproth E, Pirlet H, Streel M, van Ameron HWJ, Wolf M (1976) Dinantian rocks in the subsurface north of the Brabant and Ardenno-Rhenish massifs in Belgium, the Netherlands and the Federal Republic of Germany. Meded Rijks Geol Dienst NS 27 (3): 81–195

    Google Scholar 

  • Braithwaite CJR, Casanova J, Frevert T, Whitton BA (1989) Recent stromatolites in landlocked pools on Aldabra, western Indian Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 69: 145–165

    Article  Google Scholar 

  • Buchbinder B (1981) Morphology, microfabric and origin of stromatolites of the Pleistocene precursor of the Dead Sea, Israeli. In: Monty CLV (ed) Phanerozoic stromatolites. Springer, Berlin Heidelberg New York, pp 181–196

    Google Scholar 

  • Camoin G, Maurin A-F (1988)Rôles des micro-organismes bactéries, (cyanobactéries) dans le genèse des “Mud Mounds”. Examples du Turonien des Jevels Bireno et Mirhila (Tunisie). CR Acad Sci Paris 307: 401–407

    Google Scholar 

  • Chafetz HS, Folk RL (1984) Travertines: depositional morphology and the bacterially constructed constituents. J Sediment Petrol 54: 289–316

    Google Scholar 

  • Chuvashov BI, Riding R (1984) Principal floras of Palaeozoic marine calcareous algae. Palaeontology 27: 487–500

    Google Scholar 

  • Chuvashov BI, Luchinina VA, Shuysky VP (1987) Fossil calcareous algae. Acad Sci USSR, Siberian Sec, Inst Geol Geophys, Novosibirsk 674: 225 pp (in Russian)

    Google Scholar 

  • Copeland JJ (1936) Yellowstone thermal myxophyceae. Ann NY Acad Sci 36: 5–225

    Article  Google Scholar 

  • Copper P (1976) The cyanophyte Wetheredella in Ordovician reefs and off-reef sediments. Lethaia 9: 273–281

    Article  Google Scholar 

  • Danielli HMC (1981) The fossil alga Girvanella Nicholson & Etheridge. Bull British Museum (Nat Hist). Geology Ser 35 (2): 79–107

    Google Scholar 

  • Dragastan O (1985) Review of Tethyan Mesozoic algae of Romania. In: Toomey DF, Nitecki MH (eds) Paleoalgology: contemporary research and applications. Springer, Berlin Heidelberg New York Tokyo, pp 101–161

    Google Scholar 

  • Dragastan 0 (1988) New “Porostromata” algae of the Mesozoic. Revista Espanola de Micropaleantologia 20 (3): 355–388

    Google Scholar 

  • Eggleston JR, Dean WE (1976) Freshwater stromatolitic bioherms in Green Lake, New York. In: Walter MR (ed) Stromatolites. Developments in sedimentology, vol 20. Elsevier, Amsterdam, pp 479–488

    Google Scholar 

  • Elliott GF (1956) Further records of fossil calcareous algae from the Middle East. Micropaleontology 2 (4): 327–334

    Article  Google Scholar 

  • Flügel E (1975) Kalkalgen aus Riflkomplexen der alpin-mediterranen Obertrias. Verh Geol Bei A 2–3: 297–346

    Google Scholar 

  • Flügel E (1977) Environmental models for Upper Paleozoic benthic calcareous algal communities. In: Flügel E (ed) Fossil algae, recent results and developments. Springer, Berlin Heidelberg New York, pp 314–343

    Google Scholar 

  • Flügel E (1979) Paleoecology and microfacies of Permian, Triassic and Jurassic algal communities of platform and reef carbonates from the Alps. Bull Cent Rech Explor Prod Elf-Aquitaine 3 (2): 569–587

    Google Scholar 

  • Fois E (1981) The Sass de Putia carbonate buildup (western Dolomites): biofacies succession and margin development during the Ladinian. Riv It Paleontol 87 (4): 565–598

    Google Scholar 

  • Fois E, Gaetani M (1980) The northern margin of the Civetta buildup. Evolution during the Ladinian and the Carnian. Riv It Paleontol 86: 469–542

    Google Scholar 

  • Fois E, Gaetani M (1984) The recovery of reef-building communities and the role of cnidarians in carbonate sequences of the Middle Triassic ( Anisian) in the Italian Dolomites. Palaeontogr Am 54: 191–200

    Google Scholar 

  • Friedman GM, Amiel AJ, Schneidermann N (1974) Submarine cementation in reefs: examples from the Red Sea. J Sediment Petrol 44: 816–825

    Google Scholar 

  • Garrett P (1970) Deposit feeders limit development of stromatolites. Am Assoc Petrol Geol Bull 54: 848

    Google Scholar 

  • Garwood EJ (1931) The Tuedian Beds of northern Cumberland and Roxburghshire east of the Liddel Water. Q J Geol Soc London 87: 97–159

    Article  Google Scholar 

  • Gebelein CD (1976) The effects of the physical, chemical and biological evolution of the earth. In: Walter MR (ed) Stromatolites. Developments in sedimentology, vol 20. Elsevier, Amsterdam, pp 499–515

    Google Scholar 

  • Golubic S (1983) Stromatolites, fossil and Recent: a case history. In: Westbroek P, de Jong EW (eds) Biomineralization and biological metal accumulation. Reidel, Dordrecht, pp 313–326

    Google Scholar 

  • Golubic S, Campbell SE (1981) Biogenically formed aragonite concretions in marine Rivularia. In: Monty CLV (ed) Phanerozoic stromatolites. Springer, Berlin Heidelberg New York, pp 209–229

    Google Scholar 

  • Grotzinger JP (1989) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In: Crevello P, Sarg R, Read JF, Wilson JL (eds) Controls on carbonate platforms and basin development. Soc Econ Paleont Mineral, Spec Publ 44: 79–109

    Google Scholar 

  • Gwinner MP (1976) Origin of the Upper Jurassic limestones of the Swabian Alb (southwest Germany). Contrib Sediment 5: 1–75

    Google Scholar 

  • Harland WB, Cox AV, Llewellyn PG, Pickton CAG, Smith AG, Walters R (1982) A geologic time scale. Univ Press, Cambridge, 131 pp

    Google Scholar 

  • Hofmann HJ (1975) Stratiform Precambrian stromatolites, Belcher Islands, Canada: relations between silicified microfossils and microstructure. Am J Sci 275: 1121–1132

    Article  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Univ Press, Princeton, 582 pp

    Google Scholar 

  • Horodyski RJ, Von der Haar SP (1975) Recent calcareous stromatolites from Laguna Mormona ( Baja California) Mexico. J Sediment Petrol 45: 894–906

    Google Scholar 

  • Ischenko AA, Radionova EP (1981) On the morphological features and systematic position of the genus Wetheredella Wood 1948. In: Questions of micropalaeontology. Trans Acad Sci USSR Geol Inst 24: 140–151 (in Russian)

    Google Scholar 

  • Johnson JH (1961) Limestone-building algae and algal limestones. Johnson, Boulder, Col, 297 pp Kennard JM, James NP (1986) Thrombolites and stromatolites: two distinct types of microbial structures. Palaios 1: 492–503

    Google Scholar 

  • Kobluk DR, Risk MJ (1977) Calcification of exposed filaments ofendolithic algae. micrite envelope formation, and sediment production. J Sediment Petrol 47: 517–528

    Google Scholar 

  • Korde KB (1959) Morphology and systematic position of representatives of the genus Epiphvton. Acad Sci USSR Rep (Dokl) 126: 1087–1089 (in Russian)

    Google Scholar 

  • Korde KB, Maslov VP. Krilova IN (1963) Division Cyanophyta. In: Orlov Yu A (ed) Fundamentals of palaeontology. Acad Sci USSR. Moscow. pp 29–54 (in Russian)

    Google Scholar 

  • Kraus O, Ott E (1968) Eine ladinische Riff-Fauna in Dobratsch-Gipfelkalk ( Kärnten.Osterreich) und Bemerkungen zum Faziesvergleich von Nordalpen and Drauzug. Mitt Bayer Staatsamml Paläontol Histol Geol 8: 263–298

    Google Scholar 

  • Latham A, Riding R (1988) Thrombolites formed by calcified cyanobacteria in the Lie de Vin Series, Morocco. In: Int Assoc Sedimentol, 9th Eur Reg Meet, Leuven, Abstr, pp 127–128

    Google Scholar 

  • Loeblich Jr AR, Tappan H (1964) Sarcodina, chiefly “thecamoebians” and Foraminiferida. In: Moore RC (ed) Treatise on invertebrate paleontology, pt C: Protista 2. Geol Soc Am; and Univ Press, Kansas, 900 pp

    Google Scholar 

  • Luchinina VA (1975) Palaeoalgological characteristics of the Early Cambrian of the Siberian Platform. USSR Acad Sci Siberian Branch, Inst Geol Geophys Issue 216. Nauka, Novosibirsk, 98 pp (in Russian)

    Google Scholar 

  • Lukas KJ (1974) Two species of the chlorophyte genus Ostreobium from skeletons of Atlantic and Caribbean coral reefs. J Phycol 10: 331–335

    Google Scholar 

  • Mamet B, Préat A (1986) Algues givetiennes du bord sud du Bassin de Dinant et des regions limitrophes. Ann Soc Géol Belg 109: 431–454

    Google Scholar 

  • Mamet B, Roux A (1975) Algues dévoniennes et carbonifères de la Téthys occidentale. Rev Micropaleontol 18 (3): 134–187

    Google Scholar 

  • Maslov VP (1956) Fossil calcareous algae of the USSR. Acad Sci USSR, Geol Inst, Moscow 160: 302 pp (in Russian)

    Google Scholar 

  • Maslov VP (1960) Stromatolites. Acad Sci USSR, Works Geol Inst 41: 188 pp (in Russian)

    Google Scholar 

  • Masse J-P (1979) Schizophytoides du Crétacé inférieur. Caractéristiques et signification écologique. Bull Centre Rech Explor Prod Elf-Aquitaine 3,2: 685–703

    Google Scholar 

  • Maurin AF, Bernet-Rollande MC, Monty CLV, Nazhat S (1985) The microbial nature ofbacinellid texturessedimentological bearings. In: Int Assoc Sedimentol, 6th Eur Reg Meet, Lerida, Abstr pp 285–287

    Google Scholar 

  • Monty CLV (1973) Precambrian background and Phanerozoic history of stromatolitic communities, an overview. Ann Soc Geol Belg 96: 585–624

    Google Scholar 

  • Monty CLV (ed) (1981) Spongiostromate vs. porostromate stromatolites and oncolites. In: Phanerozoic stromatolites. Springer, Berlin Heidelberg New York, pp 1–4

    Google Scholar 

  • Mountjoy EW, Riding R (1981) Foreslope stromatoporoid-renalcid bioherm with evidence of early cementation, Devonian Ancient Wall reef complex, Rocky Mountains. Sedimentology 28: 299–319

    Google Scholar 

  • Pentecost A (1987) Growth and calcification of the freshwater cyanobacterium Rivularia haematites. Proc R Soc Lond B232: 125–136

    Article  Google Scholar 

  • Pentecost A (1988) Growth and calcification of the cyanobacterium Homeothrix crustacea. J General Microbiol 134: 2665–2671

    Google Scholar 

  • Pentecost A, Riding R (1986) Calcification in cyanobacteria. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals. Syst Assoc Spec Vol 30: 73–90

    Google Scholar 

  • Pia J (1927) Thallophyta. In: Hirmer M (ed) Handbuch der Paläobotanik, vol 1. Oldenbourg, München, pp 31–136

    Google Scholar 

  • Playford PE, Cockbain AE, Druce EC, Wray JL (1976) Devonian stromatolites from the Canning Basin, Western Australia. In: Walter MR (ed) Stromatolites. Developments in sedimentology, vol 20. Elsevier, Amsterdam, pp 543–563

    Google Scholar 

  • Poncet J (1976) Hypothèse relative à la morphogenèse du thalle de Renalcis (algue calcaire — paléozoïque) et affinité possible avec les Rivulariacées actuelles. Geobios 9 (3): 345–351

    Article  Google Scholar 

  • Pratt BR (1982) Stromatolite decline — a reconsideration. Geology 10: 512–515

    Article  Google Scholar 

  • Pratt BR (1984) Epiphyton and Renalcis — diagenetic microfossils from calcification of coccoid blue-green algae. J Sediment Petrol 54:948–971

    Google Scholar 

  • Pratt BR, James NP (1982) Epiphyton and Renalcis — diagenetic microfossils from calcification of coccoid blue-green algae (abs.). Am Assoc Petrol Geol Bull 66: 619

    Google Scholar 

  • Richter DK, I lerforth A, Ott E (1979) Pleistozäne, brackische Blaugrünalgenriffe mit Rivularia haematites auf der Perachorahalbinsel bei Korinth ( Griechenland ). N Jahrb Geol Palaontol Abh 159: 14–40

    Google Scholar 

  • Riding R (1975) Girvanella and other algae as depth indicators. Lethaia 8: 173–179

    Article  Google Scholar 

  • Riding R (1977a) Skeletal stromatolites. In: Flügel E (ed) Fossil algae: recent results and developments. Springer, Berlin Heidelberg New York, pp 57–60

    Google Scholar 

  • Riding R (1977b) Calcified Plectonema (blue-green algae), a Recent example of Girvanella from Aldabra Atoll. Palaeontology 20: 33–46

    Google Scholar 

  • Riding R (1977c) Systematics of Wetheredella. Lethaia 10: 94

    Article  Google Scholar 

  • Riding R (1982) Cyanophyte calcification and changes in ocean chemistry. Nature (London) 299: 814–815

    Article  Google Scholar 

  • Riding R (1983) Cyanoliths (cyanoids): oncoids formed by calcified cyanophytes. In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg New York, pp 276–283

    Google Scholar 

  • Riding R (1988) Classification of microbial carbonates. In: 6th Int Coral Reef Symp: Benthic microbes and reefs, Discussion Session. Townsville, Abstr, p 5

    Google Scholar 

  • Riding R (1989) Early history of calcification in prokaryotes and algae. Terra abstracts 1, (1): 198–199

    Google Scholar 

  • Riding R, Brasier M (1975) Earliest calcareous foraminifera. Nature (London) 257:208–210 Riding R, Toomey DF (1972) The sedimentological role of Epiphyton and Renalcis in Lower Ordovician mounds, southern Oklahoma. J Paleontol 46: 509–519

    Google Scholar 

  • Riding R, Voronova L (1982a) Recent freshwater oscillatoriacean analogue of the Lower Palaeozoic calcareous alga Angulocellularia. Lethaia 15: 105–114

    Article  Google Scholar 

  • Riding R, Voronova L (1982b) Affinity of the Cambrian alga Tubomorphophyton and its significance for the Epiphytaceae. Palaeontology 25: 869–878

    Google Scholar 

  • Riding R, Voronova L (1982c) Calcified cyanophytes and the Precambrian-Cambrian transition. Naturwissenschaften 69: 498

    Article  Google Scholar 

  • Riding R, Voronova L (1984) Assemblages of calcareous algae near the Precambrian/Cambrian boundary in Siberia and Mongolia. Geol Mag (Tokyo) 121 (3): 205–210

    Article  Google Scholar 

  • Riding R, Voronova L (1985) Morphological groups and series in Cambrian calcareous algae. In: Toomey DF, Nitecki MH (eds) Paleoalgology: contemporary research and applications. Springer, Berlin Heidelberg New York Tokyo, pp 56–78

    Google Scholar 

  • Riding R, Watts N (1981) Silurian algal reef crest in Gotland. Naturwissenschaften 68:91–92 Riding R, Watts N (1983) Silurian Renalcis (?cyanophyte) from reef facies in Gotland ( Sweden ). N Jahrb Geol Paläontol Mh 4: 242–248

    Google Scholar 

  • Rippka R, Dernelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61

    Article  Google Scholar 

  • Rothpletz A (1891) Fossile Kalkalgen aus den Familien der Codiaceen und der Corallineen. Z Dtsch Geol Ges 43: 295–322

    Google Scholar 

  • Roux A (1985) Introduction à l’étude des Algues fossiles paléozoïgues (de la Bactérie à la tectonique des plaques). Bull Centres Rech Explor Prod Elf-Aquitame 9 (2): 465–699

    Google Scholar 

  • Sandberg PA (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature (London) 305: 19–22

    Article  Google Scholar 

  • Schäfer P, Senowbari-Daryan B (1983) Die Kalkalgen aus der Obertrias von Hydra, Griechenland. Palaeontographica B, 185: 83–142

    Google Scholar 

  • Schopf JW (1968) Microflora of the Bitter Springs Formation, late Precambrian, central Australia. J Paleontol 42: 651–688

    Google Scholar 

  • SchopfJW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. In: Schopf JW (ed) Earth’s earliest biosphere, its origin and evolution. Univ Press, Princeton, NJ, pp 214–239

    Google Scholar 

  • Szulczewski M (1963) Stromatolites from the high-tatric Bathonian of the Tatra Mountains. Acta Geol Pol 13: 142–145

    Google Scholar 

  • Tyler SA, Barghoorn ES (1954) Occurrence of structurally preserved plants in pre-Cambrian rocks of the Canadian Shield. Science 119: 606–608

    Article  Google Scholar 

  • Vachard D (1974) Contribution à l’étude stratigraphique et micropaléontologique (algues et foraminifères) du Dévonien-Carbonifère inférieur de la partie orientale du versant meridional de la Montagne Noire (Hérault, France). Thesis, 3ème Cycle, Univ Paris V I

    Google Scholar 

  • Vologdin AG (1962) The oldest algae of the USSR, pt 1 and 2. Acad Sci USSR, Moscow, 656 pp (in Russian)

    Google Scholar 

  • Walter MR, Awramik SM (1979) Frutexites from stromatolites of the Gunflint Iron Formation of Canada, and its biological affinities. Precambrian Res 9: 23–33

    Google Scholar 

  • Walter MR, Heys GR (1985) Links between the rise of the Metazoa and the decline of stromatolites. Precambrian Res 29: 149–174

    Article  Google Scholar 

  • Winland HD, Matthews RK (1974) Origin and significance of grapestone, Bahama islands. J Sediment Petrol 44: 921–927

    Google Scholar 

  • Winsborough BM, SeelerJ-S, Golubic S, Folk RL, Maguire Jr B (in prep) Fresh-water stromatolites, oncoids and wated pebbles from a spring-fed lake in northeastern Mexico

    Google Scholar 

  • Wood A (1948) “Sphaerocodium”,a misinterpreted fossil from the Wenlock Limestone. Geol Assoc Proc 59:9–22, 4 pls

    Google Scholar 

  • Wray JL (1967) Upper Devonian calcareous algae from the Canning Basin, Western Australia. Prof Contrib Col School Mines 3: 76 pp

    Google Scholar 

  • Zhuravleva IT, Meshkova NP, Luchinina VA, Kashina LN (1982) Late Precambrian and early Cambrian biofacies of the Anabarian Sea. In: Environment and life in the geological past, palaeolandscape and biofacies. USSR Acad Sci, Siberian Sec, Inst Geol Geophys, Novosibirsk, Trans 510: 74–103 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riding, R. (1991). Calcified Cyanobacteria. In: Riding, R. (eds) Calcareous Algae and Stromatolites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52335-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52335-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52337-3

  • Online ISBN: 978-3-642-52335-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics