Skip to main content

Archaean and Proterozoic Stromatolites

  • Chapter
Calcareous Algae and Stromatolites

Abstract

The approximately 3400-million-year history of the Archaean and Proterozoic Eons is rich in the fossil remains of organosedimentary structures called stromatolites, built primarily by cyanobacteria. Stromatolites first appear 3500 Ma ago and argue well for the presence and therefore great antiquity of cyanobacteria. The presence of cyanobacteria in such ancient rocks indicates that the evolution of the major prokaryotic phyla had occurred by Early Archaean time.

Although rare in the Archaean and first 300 million years of the Proterozoic, stromatolites undergo diversification and increase in abundance in the late Early Proterozoic due, in large part, to the oxygenation of the atmosphere-hydrosphere system, permitting cyanobacteria to disperse, colonize, and thrive in shallow continental shelf-like environments produced during earlier and contemporaneous periods ofcratonization. A second diversification occurred in the Early to Middle Riphean (approximately 1500 to 1200 Ma ago), and might in some way be due to the appearance of eukaryotes. A sharp drop in stromatolite diversity occurs during the Vendian (675 to 570 Ma ago) and is probably due to the activity of metazoans. Two diversity plateaus occur, one separates the two diversifications and the other occurs after the last diversification and before the Vendian decline.

Stromatolites are the products of the complex interactions of microbial, sedimentary, and environmental factors. While stromatolites are not well understood from a biogeological per-spective, they do provide valuable evidence for ancient life, they are useful for biostratigraphy and palaeoecology, and their distributional and diversity patterns provide insight into the first 3 billion years of the history of life on this planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Awramik SM (1971) Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science 174: 825–827

    Article  Google Scholar 

  • Awramik SM (1986) New fossil finds in old rocks. Nature (London) 319: 446–447

    Article  Google Scholar 

  • Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci USA 85: 1327–1329

    Article  Google Scholar 

  • Awramik SM, Schopf JW, Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res 20: 357–374

    Article  Google Scholar 

  • Awramik SM, Schopf JW, Walter MR (1988) Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archean stromatolites? A discussion. Precambrian Res 39: 303–309

    Article  Google Scholar 

  • Bambach RK (1985) Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. In: Valentine JW (ed) Phanerozoic diversity patterns. Univ Press, Princeton, pp 191–253

    Google Scholar 

  • Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147:563–577 Bertrand-Sarfati J, Walter MR (1981) Stromatolite biostratigraphy. Precambrian Res 15: 353–371

    Google Scholar 

  • Black M (1933) The algal sediments of Andros Island, Bahamas. Philos Trans R Soc London Biol 222: 165–192

    Article  Google Scholar 

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5: 161–181

    Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2: 241–254

    Article  Google Scholar 

  • Byerly GR, Lowe DR, Walsh MM (1986) Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature (London) 319: 489–491

    Google Scholar 

  • Cameron EM, Baumann A (1972) Carbonate sedimentation during the Archean. Chem Geol 10: 17–30

    Article  Google Scholar 

  • Cao Rui-ji (1988) Study on stromatolite decline event in terminal Precambrian. Acta Palaeontol Sin 27: 737–750 (in Chinese with English summary)

    Google Scholar 

  • Cloud P (1976a) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2: 351–387

    Google Scholar 

  • Cloud P (19766) Major features of crustal evolution. Geol Soc S Afr Annexure 79:1–33

    Google Scholar 

  • Cloud P (1983) Banded iron-formations — a gradualist’s dilemma. In: Trendall AF, Morris RC (eds) Iron-formation: facts and problems. Elsevier, Amsterdam, pp 401–416

    Chapter  Google Scholar 

  • Golubic S (1973) The relationship between blue-green algae and carbonate deposits. In: Carr NG

    Google Scholar 

  • Whitton BA (eds) The biology of blue-green algae. Blackwell, Oxford, pp 434–472

    Google Scholar 

  • Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed) Stromatolites. Elsevier,Amsterdam, pp 113–126

    Google Scholar 

  • Goodwin AM (1981) Precambrian perspectives. Science 213: 55–61

    Article  Google Scholar 

  • Hall J (1883) Cryptozoön n.g.; Cryptozoön proliferum n.sp. NY State Museum Ann Rep 36, Plate 6 Hoffman PF (1973) Recent and ancient algal stromatolites: seventy years of pedagogic cross-pol-

    Google Scholar 

  • lination. In: Ginsburg RG (ed) Evolving concepts in sedimentology. Johns Hopkins Univ Press,Baltimore, pp 178–191

    Google Scholar 

  • Hofmann HJ (1985) Precambrian carbonaceous megafossils. In: Toomey DF, Nitecki MH (eds) Paleoalgology: contemporary research and applications. Springer, Berlin Heidelberg New York Tokyo, pp 20–33

    Chapter  Google Scholar 

  • Kalkowsky E (1908) Oolith and Stromatolith im norddeutschen Buntsandstein. Dtsch Geol Ges 60: 68–125

    Google Scholar 

  • Knoll AH (1985) The distribution and evolution of microbial life in the Late Proterozoic Era. Annu Rev Microbiol 39: 391–417

    Article  Google Scholar 

  • Krumbein WE (1983) Stromatolites — the challenge of a term in space and time. Precambrian Res 20: 493–531

    Article  Google Scholar 

  • Krylov IN (1963) Stolbchaty vetvyashchiesya stromatolity rifeiskikh otlozhenii yuzhnogo urala. Tr Geól Inst Akad Nauk SSSR 69: 1–133

    Google Scholar 

  • Logan BW (1961) Cryptozoon and associated stromatolites from the Recent of Shark Bay, Western Australia. J Geol 69:517–533

    Google Scholar 

  • Lowe DR (1980a) Archean Sedimentation. Annu Rev Earth Planet Sci 8:140–194

    Google Scholar 

  • Lowe DR (1980b) Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature (London) 284:441–443

    Google Scholar 

  • Lowe DR (1983) Restricted shallow-water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Res 19:239–283

    Google Scholar 

  • Margulis L, Schwartz KV (1982) Five Kingdoms. Freeman, San Francisco, 338 pp

    Google Scholar 

  • Monty CLV (1967) Distribution and structure of Recent stromatolitic algal mats, eastern Andros Island, Bahamas. Ann Soc Geol Belg 90:55–100

    Google Scholar 

  • Monty CLV (1973) Precambrian background and Phanerozoic history of stromatolite communities, an overview. Ann Soc Geol Belg 96:585–624

    Google Scholar 

  • Pratt BR (1982) Stromatolite decline — a reconsideration. Geology 10:512–515

    Google Scholar 

  • SchopfJW (1968) Microflora of the Bitter Springs Formation, late Precambrian, central Australia. J Paleontol 42: 651–688

    Google Scholar 

  • Schopf JW (1977) Biostratigraphic usefulness of stromatolitic Precambrian microbiotas. Precambrian Res 5: 143–173

    Article  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3 to 3.5 Ga-old) fossil microorganisms from the Warrawoona Group, Western Australia. Science 237: 70–73

    Google Scholar 

  • Semikhatov MA (1976) Experience of stromatolite studies in the USSR. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 337–357

    Chapter  Google Scholar 

  • Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis — progress and problems. Can J Earth Sci 16: 992–1015

    Article  Google Scholar 

  • Sepkoski JJ Jr (1979) A kinetic model of Phanerozoic taxonomic diversity. Il. Early Phanerozoic families and multiple equilibria. Paleobiology 5: 222–251

    Google Scholar 

  • Valentine JW, Walker TD (1986) Diversity trends within a model taxonomic hierarchy. Physica 22D: 31–42

    Google Scholar 

  • Vidal G (1984) The oldest eukaryotic cells. Sci Am 250: 48–57

    Article  Google Scholar 

  • Walcott CD (1914) Cambrian geology and paleontology Ill: Precambrian Algonkian algal flora. Smithsonian Misc Coll 67: 77–156

    Google Scholar 

  • Walsh MM, Lowe DM (1985) Filamentous microfossils from the 3,500-Myr-old Onverwacht

    Google Scholar 

  • Group, Barberton Mountain Land, South Africa. Nature (London) 314: 530–532

    Google Scholar 

  • Walter MR (1976) Introduction. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 1–3 Walter MR (1983) Archean stromatolites: Evidence of the Earth’s earliest benthos. In: SchopfJW

    Google Scholar 

  • ed) Earth’s earliest biosphere. Univ Press, Princeton, pp 187–213

    Google Scholar 

  • Walter MR, Heys GR (1985) Links between the rise of the Metazoa and the decline of stromatolites. Precambrian Res 29: 149–174

    Article  Google Scholar 

  • Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature (London) 284: 443–445

    Google Scholar 

  • Winsborough BM, Golubic S (1987) The role of diatoms in stromatolite growth: two examples from modern freshwater settings. J Phycol 23: 195–201

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    Google Scholar 

  • Zhu Shixing, Xu Chaolei, Gao Jianping (1987) Early Proterozoic stromatolites from Wutai Mt. and its adjacent regions. Bull Tianjin Inst Geol Min Res 17: 1–221 (in Chinese with English summary)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awramik, S.M. (1991). Archaean and Proterozoic Stromatolites. In: Riding, R. (eds) Calcareous Algae and Stromatolites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52335-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52335-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52337-3

  • Online ISBN: 978-3-642-52335-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics