Skip to main content

Calcification Processes in Algae and Cyanobacteria

  • Chapter
Calcareous Algae and Stromatolites

Abstract

In algae and cyanobacteria, calcification is always associated with biosynthetic products and, where analyses have been made, these products have been found to consist predominantly of polysaccharide, although no specific polymer seems to be associated with calcification.

Two aspects of the mineralization merit special consideration: photosynthesis has long been considered the main driving force causing a depletion in aqueous carbon dioxide and an increase in CO3 2−. Photosynthesis will always favour calcification and the magnitude of the effect will depend upon photosynthetic rates and the lengths of diffusion paths for the ions and molecules involved in calcification. Second, at the ocean surface the precipitation of calcium carbonate is thermodynamically favoured even in the absence of photosynthesis, which may indicate either a widespread evolution of calcification inhibitors or absence of suitable catalysts. Today, the majority of aquatic plants remain uncalcified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnott HJ, Pautard FGE (1970) Calcification in Plants. In: Schraer H (ed) Biological calcification. Elsevier/North Holland Biomedical Press, Amsterdam New York, pp 375–446

    Google Scholar 

  • Böhm EL, Goreau TF (1973) Composition and calcium binding properties of the water soluble polysaccharides in the calcareous alga Halimeda opuntia ( L. ). Int Rev Ges Hydrobiol 58: 117–126

    Google Scholar 

  • Borman AH, de Jong EW, Huizinga M, Kok DJ, Westbroek P, Bosch L (1982) The role in CaCO. crystallization of an acid Ca’ -polysaccharide associated with coccoliths of Emiliania huxleyi. Eur J Biochem 129: 179–183

    Google Scholar 

  • Borowitzka MA (1976) Calcification in the green alga Halimeda. II. The exchange of Ca“ and the occurrence of age gradients in calcification and photosynthesis. J Exp Bot 27: 864–878

    Article  Google Scholar 

  • Borowitzka MA (1977) Algal calcification. Oceanogr Mar Biol 15: 189–223

    Google Scholar 

  • Borowitzka MA (1981) Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea. Mar Biol 62: 17–23

    Article  Google Scholar 

  • Borowitzka MA (1982a) Mechanisms in algal calcification. In: Round FE, Chapman CH (eds) Progress in phycological research, vol 1. Elsevier/North Holland Biomedical Press, Amsterdam New York, pp 137–177

    Google Scholar 

  • Borowitzka MA (1982b) Morphological and cytological aspects of algal calcification. Int Rev Cytol 74: 127–162

    Article  Google Scholar 

  • Borowitzka MA (1986) Physiology and biochemistry of calcification in the Chlorophyceae. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals. Clarendon, Oxford, pp 107–124

    Google Scholar 

  • Borowitzka MA, Larkum AWD (1976a) Calcification in the green alga Halimeda. IV. The action of metabolic inhibitors on photosynthesis and calcification. J Exp Bot 27: 894–907

    Google Scholar 

  • Borowitzka MA, Larkum AWD (1976b) Calcification in the green alga Halimeda. III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. J Exp Bot 27: 879–893

    Google Scholar 

  • Cabioch J, Giraud G (1986) Structural aspects of biomineralization in the coralline algae (calcified Rhodophyceae). In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals. Clarendon, Oxford, pp 141–156

    Google Scholar 

  • Cooke RC, Kepkay PE (1984) Apparent calcite supersaturation at the ocean surface. Why the present solubility product of pure calcite in seawater does not predict the correct solubility of the salt in nature. Mar Chem 15: 59–70

    Google Scholar 

  • Daily FK (1975) A note concerning calcium carbonate deposition in Charophytes. Phycologia 14: 331–332

    Article  Google Scholar 

  • Devi-Prasad PV, Chowdary YBY (1979) Factors influencing calcification of Gloeotaenium loitlesbergianum Hansgirg. Indian J Exp Biol 17: 1402–1403

    Google Scholar 

  • Digby PSB (1977) Growth and calcification in the coralline algae. Clathromorphum circumscriptum and Corallina officinalis and the significance of pH in relation to precipitation. J Mar Biol Assoc UK 57: 1095–1109

    Article  Google Scholar 

  • Fresnel J (1986) Nouvelles observations sur une coccolithacée rare: Cruciplacolithus neohelis (McIntyre et Bé) Reinhardt (Prymnesionphyceae). Protistologica: 22: 193–204

    Google Scholar 

  • Gill JS, Varsanik RG (1986) Computer modelling of the specific matching between scale inhibitors and crystal structure of scale forming minerals. J Crystal Growth 76: 57–62

    Article  Google Scholar 

  • Golubic S (1973) The relationship between blue-green algae and carbonate deposits. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell, London, pp 434–472

    Google Scholar 

  • Golubic S, Campbell SE (1981) Biogenically formed aragonite in marine Rivularia. In: Monty CLV (ed) Phanerozoic stromatolites. Springer, Berlin Heidelberg New York, pp 209–229

    Google Scholar 

  • Golubic S, Fischer AG (1975) Ecology of calcareous nodules forming in Little Conestoga Creek near Lancaster, Pennsylvania. Verh Int Verein Limnol 19: 2315–2323

    Google Scholar 

  • Golubic S, Marcenko E (1965) Über Konvergenszerscheinungen bei Standortsformen der Blaualgen unter extremem Lebensbedingungen. Schweiz Z Hydrol 27: 207–217

    Article  Google Scholar 

  • Green JC (1986) Biomineralization in the algal class Prymnesiophyceae. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals. Clarendon, Oxford, pp 173–188

    Google Scholar 

  • Green JC, Course PA (1983) Extracellularcalcification in Chrysotila lamellosa ( Prymnesiophyceae ). Br Phycol J 18: 367–382

    Google Scholar 

  • Henisch HK (1970) Crystal growth in gels. Pennsylvania Univ Press, Pennsylvania, USA

    Google Scholar 

  • House WA, Donaldson L (1986) Adsorption and coprecipitation of phosphate on calcite. J Colloid Interf Sci 112: 309–324

    Article  Google Scholar 

  • Jones B, Kahle CF (1986) Dendritic calcite crystals formed by calcification of algal filaments in a vadose environment. J Sediment Petrol 56: 217–227

    Google Scholar 

  • Keller JB, Rubinow SI (1981) Recurrent precipitation and Liesegang rings. J Chem Phys 74: 5000–5007

    Article  Google Scholar 

  • Klaveness D (1976) Emiliania huxleyi (Lohmann) Hay and Mohler. III. Mineral deposition and the origin of the matrix during coccolith formation. Protistologica 12:217–224

    Google Scholar 

  • Klaveness D, Paasche E (1979) Physiology of coccolithophorids. In: Levandowsky M, Hunter SH (eds) Biochemistry and physiology of protozoa, vol 1, 2nd edn. Academic Press, New York London, pp 191–213

    Google Scholar 

  • Krumbein WF (1979) Calcification by bacteria and algae. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements, vol 3. Elsevier, Amsterdam, pp 47–68

    Google Scholar 

  • Lavelle JM (1979) Translocation in Calliarthron and its role in the light-enhancement of calcification. Mar Biol 55: 37–44

    Article  Google Scholar 

  • Lewin JC (1962) Calcification. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic Press, New York London, pp 457–464

    Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211: 1126–1131

    Article  Google Scholar 

  • Lowenstam HA (1986) Mineralization processes in monerans and protoctists. In: Leadbeater BSC. Riding R (eds) Biomineralization in lower plants and animals. Clarendon, Oxford, pp 1–17

    Google Scholar 

  • Lowenstam HA, Wiener S (1983) Mineralization by microorganisms and the evolution of biomineralization. In: Westbroek P, de Jong EW (eds) Biomineralization and biological metal accumulation. Elsevier, Amsterdam, pp 191–204

    Google Scholar 

  • Manton I (1986) Functional parallels between calcified and uncalcified periplasts. In: Leadbeater BSC, Riding R (eds) Biomineralization of lower plants and animals. Clarendon, Oxford, pp 157–172

    Google Scholar 

  • Manton I, Leedale GF (1963) Observations on the microanatomy of Crystallolithus hyalinus Gaarder and Markali. Arch Mikrobiol 47: 115–136

    Article  Google Scholar 

  • Misonou T, Furuya K, Nisizawa K (1980a) Particular Ca-binding substances from marine macro-algae. II. Incorporation ofa’Ca into acid-insoluble residues from various algae and the solubilization of Ca-binding substances from the residues. Jpn J Phycol 28: 105–112

    Google Scholar 

  • Misonou T, Okazaki M, Nisizawa K (1980b) Particular Ca-binding substances in marine macro-algae. I. Uptake of ‘Ca by various algae and extraction of the Ca-binding substances. Jpn J Phycol 28: 31–36

    Google Scholar 

  • Müller G, Oti M (1981) The occurrence of calcified planktonic green algae in freshwater carbonates. Sedimentology 28: 897–907

    Article  Google Scholar 

  • Okazaki M. Furuya K (1982) Studies on calcium carbonate deposition of algae-IV. Initial calcification sites of calcareous red alga Galaxaura fastigiata Decaisne. Bot Mar 25:511–517 Okazaki M, Furuya K (1985) Mechanisms in algal calcification. Jpn J Phycol 33: 328–344

    Google Scholar 

  • Okazaki M, Ichikawa K, Furuya K (1982) Studies on the calcium carbonate deposition of algae: 4. Initial calcification site of Galaxaura fastigiata. Bot Mar 25: 511–519

    Article  Google Scholar 

  • Okazaki M, Pentecost A, Tanaka Y, Miyata M (1986) A study of calcium carbonate deposition in the genus Padina ( Phaeophyceae, Dictyotales). Br Phycol J 21: 217–224

    Google Scholar 

  • Paerl HW (1982) Interactions with bacteria. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell, Oxford, pp 441–461

    Google Scholar 

  • Parker SB, Skarnulis AJ, Westbroek P, Williams RJP (1983) The ultrastructure of coccoliths from the marine alga Emiliania huxleyi (Lohmann) Hay and Mohler: an ultra-high resolution electron microscope study. Proc R Soc London Ser B 219: 111–117

    Article  Google Scholar 

  • Pentecost A (1978) Calcification and photosynthesis in Corallina officinalis L. using the “CO, method. Br Phycol J 13: 383–390

    Article  Google Scholar 

  • Pentecost A (1980) Calcification in plants. Int Rev Cytol 62: 1–27

    Article  Google Scholar 

  • Pentecost A (1985) Photosynthetic plants as intermediary agents between environmental bicarbonate and carbonate deposition. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. Am Soc Plant Physiol, Rockville, Maryland, pp 459–476

    Google Scholar 

  • Pentecost A (1987) Growth and calcification of the freshwater cyanobacterium Rivularia haematites. Proc R Soc London Ser B 232: 125–136

    Article  Google Scholar 

  • Pentecost A (1988a) Growth and calcification of the cyanobacterium Homoeothrix crustacea. J Gen Microbiol 134: 2665–2671

    Google Scholar 

  • Pentecost A (1988b) Observations on growth rates and calcium carbonate deposition in the green alga Gongrosira. New Phytol 110: 249–253

    Article  Google Scholar 

  • Pentecost A (1989) Growth and calcification of Calothrix-dominated oncolites from Northern England. In: Crick RE (ed) 5th Int Conf Biomineralization: Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals. Plenum, New York, pp 443–454

    Google Scholar 

  • Pentecost A, Bauld J (1988) Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell. Geomicrobiol J 6: 129–135

    Article  Google Scholar 

  • Pentecost A, Riding R (1986) Calcification in Cyanobacteria. In: Leadbeater BSC, Riding R (eds) Biomineralization of lower plants and animals. Clarendon, Oxford, pp 73–90

    Google Scholar 

  • Price GD, Badger MR, Bassett ME, Whitecross MI (1985) Involvement of Plasmalemmasomes and carbonic anhydrase in photosynthetic utilization of bicarbonate in Chara corallina. Aust J Plant Physiol 12: 241–256

    Article  Google Scholar 

  • Pytkowicz RM (1965) Rates of inorganic calcium carbonate nucleation. J Geol 73: 196–199

    Article  Google Scholar 

  • Raven JA, Smith FA, Walker NA (1986) Biomineralization in the Charophyceae sensu lato. In: Leadbeater BSC, Riding R (eds) Biomineralization of lower plants and animals. Clarendon, Oxford, pp 125–139

    Google Scholar 

  • Rowson JD, Leadbeater BSC, Green JC (1986) Calcium carbonate deposition in the motile (Crystallolithus) phase of Coccolithus pelagicus. Br Phycol J 21: 359–370

    Article  Google Scholar 

  • Schrader M, Drews G, Golecki JR, Weckesser J (1982) Isolation and characterization of the sheath from the cyanobacterium Chlorogloeopsis PCC 6912. J Gen Microbiol 128: 267–272

    Google Scholar 

  • Simkiss K (1986) The processes of biomineralization in lower plants and animals—an overview. In: Leadbeater BSC, Riding R (eds) Biomineralization of lower plants and animals. Clarendon, Oxford, pp 19–37

    Google Scholar 

  • Somers GF, Brown M (1978) The affinity of trichomes of blue-green algae for calcium ions. Estuaries 1: 17–28

    Article  Google Scholar 

  • Tangen K, Brand LE, Blackwelder PL, Guillard RRL (1982) Thoracosphaera heimii is a dinophyte. Observations on its morphology and life cycle. Mar Micropaleontol 7: 193–212

    Google Scholar 

  • Tappan H (1980) The paleobiology of plant protists. Freeman, San Francisco

    Google Scholar 

  • Tschermak-Woess E (1980) Zur Kenntnis von Tetrasporopsis fuscescens. Plant Syst Evol 133: 121–133

    Article  Google Scholar 

  • Vesk M, Borowitzka MA (1984) Ultrastructure of tetrasporogenesis in the coralline alga Haliptilon cuvieri ( Rhodophyta ). J Phycol 20: 501–515

    Google Scholar 

  • de Vrind de Jong EW, Borman AH, Thierry R, Westbroek P, Gruter M, Kamerling JP (1986) Calcification in the coccolithophorids Emiliania huxleyi and Pleurochrysis carterae. II. Biochemical aspects. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals. Clarendon, Oxford, pp 205–218

    Google Scholar 

  • van der Wal P, de Jong L, Westbroek P, de Bruijn WC (1983a) Ultrastructural polysaccharide localization in calcifying and naked cells of the coccolithophorid Emiliania huxleyi. Protoplasma 118: 157–168

    Article  Google Scholar 

  • van der Wal P, de Jong L, Westbroek P, de Bruijn WC, Mulder-Stapel AA (1983b) Polysaccharide localization, coccolith formation and Golgi dynamics in the coccolithophorid Hymenomonas carterae. J Ultrastruct Res 85: 1139–1158

    Google Scholar 

  • Walker NA (1983) The uptake of inorganic carbon by freshwater plants. Plant Cell Environ 6: 323–328

    Google Scholar 

  • Watabe N (1989) Intracellular mineralization of invertebrates and algae. In: Crick RE (ed) 5th Int Conf Biomineralization: evolution of ocean chemistry and its significance to biomineralization. (in press)

    Google Scholar 

  • Westbroek P, van der Wal P, van Emburg PR, de Vrind de Jong EW, de Bruijn WC (1986) Calcification in the coccolithophorids Emiliania huxleyi and Pleurochrysis carterae. I. Ultra-structural aspects. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals. Clarendon, Oxford, pp 189–204

    Google Scholar 

  • Winsborough BM, Golubic S (1987) The role of diatoms in stromatolite growth: two examples from modern freshwater settings. J Phycol 23: 195–201

    Article  Google Scholar 

  • Wood KG (1975) Photosynthesis of Cladophora in relation to light, and CO, limitation; CaCO., precipitation. Ecology 56: 479–484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pentecost, A. (1991). Calcification Processes in Algae and Cyanobacteria. In: Riding, R. (eds) Calcareous Algae and Stromatolites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52335-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52335-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52337-3

  • Online ISBN: 978-3-642-52335-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics