Skip to main content

Abstract

One of the areas where algorithmic or parametric programming has made its biggest contribution is in Computer Aided Design. The traditional CAD/CAM programs simply offer a STATIC visual aid to users for the documentation of a preconceived part or assembly. No provision exists to determine the effects of desired changes on performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. E. Botkin, “Shape Optimization of Plate and Shell Structures,” AIAA Journal, Vol. 20, No. 3, 1982, pp. 268–273.

    Article  Google Scholar 

  2. J. A. Bennett and M. E. Botkin,, “Structural Shape Optimization with Geometric Problem Description and Adaptive Mesh Refinement,” AIAA Journal, Vol. 23, No. 3, 1985, pp. 458–464.

    Article  Google Scholar 

  3. J. A. Bennett and M. E. Botkin, ‘The Optimum Shape-Automated Structural Design,“ Plenum Press, New York, 1986.

    Google Scholar 

  4. M. H. Iman, ‘Three-Dimensional Shape Optimization,“ Int. J. Numer. Meth. Eng., Vol. 18, 1982, pp. 681–673.

    Google Scholar 

  5. V. Braibant and C. Fleury, “Shape Optimal Design Using b-Splines,” Comp. Meth. Appl. Mech. Eng., Vol. 44, 1984, pp. 247–267.

    Article  MATH  Google Scholar 

  6. R T. Haftka and R. V. Gandhi, “Structural Shape Optimization—A Survey,” Comp. Meth. Appl. Mech. Eng., Vol. 57, 1986, pp. 91–106.

    Article  MATH  Google Scholar 

  7. ADINA User’s Manual,* ADINA R & D, Inc., Watertown, Massachusetts, December 1984.

    Google Scholar 

  8. G. N. Vanderplaats and H. Sugimoto, “A General Purpose Optimization Program for Engineering Design,” Int. J. Comp. Struct., Vol. 24, No. 1, 1986.

    Google Scholar 

  9. V. Kumar, S. J. Lee and M. D. German, “Finite Element Design Sensitivity Analysis and Its Integration with Numerical Optimization for Engineering Design,” to appear as GE TIS Report, Schenectady, New York, 1988.

    Google Scholar 

  10. B. W. Shaffer, “BZANS User’s Manual,” GE Aircraft Engine, Lynn, Massachusetts, 1988.

    Google Scholar 

  11. V. Kumar, M. D. German and S. -J. Lee, “A Geometry-Based 2-Dimensional Shape Optimization Methodology and a Software System with Applications,” to appear as GE TIS Report, Schenectady, New York, 1988.

    Google Scholar 

  12. M. S. Shephard and M. A. Yerry, “Approaching the Automatic Generation of Finite Element Meshes,” ASME J. of Comp. in Mech. Eng., 1983, pp. 49–56.

    Google Scholar 

  13. C. M. Graichen and A. F. Hathaway, “QUADTREE—A 2-D Fully Automatic Mesh Generator,” GE Report, Schenectady, New York, 1988.

    Google Scholar 

  14. Botkin, M.E. et al, “Shape Optimization of Three-Dimensional Stamped and Solid Automotive Components”, The Optimum Shape (J.A. Bennett, M.A. Botkin, eds.), Plenum Press, N.Y. (1986) 235–257.

    Google Scholar 

  15. Fleury, C., “Shape Optimal Design by the Convex Linearization Method”, ibidem, 297–320.

    Google Scholar 

  16. NISA II User’s Manual, E.M.R.C., Troy, Michigan 1988.

    Google Scholar 

  17. DISPLAY II User’s Manual, E.M.R.C., Troy, Michigan 1988.

    Google Scholar 

  18. Schnack, E., “An Optimization Procedure for Stress Concentration by the Finite Element Technique”, IJNME, 14 (1979) 115–124.

    Article  MATH  Google Scholar 

  19. Haug, E.J. et al, “A Variational Method for Shape Optimal Design of Elastic Structures”, New Directions in Optimum Structural Design (E. Atrek et al, eds.), Wiley, Chichester (1984) 105–137.

    Google Scholar 

  20. Kikuchi, N. et al, “Adaptive Finite Element Methods for Shape Optimization of Linearly Elastic Structures”, The Optimum Shape (J.A. Bennett, M.A. Botkin, eds.), Plenum Press, N.Y. (1986) 139–166.

    Google Scholar 

  21. Soarez, C.A.M., Choi, K.K., “Boundary Elements in Shape Optimal Design of Structures”, ibidem, 199–228.

    Google Scholar 

  22. R.T. Haftka and R.V. Grandhi, “Structural Shape Optimization–A Survey,” Computer Methods in Applied Mechanics and Engineering, 57, 91–106 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  23. Y.L. Ding, “Shape Optimization of Structures: A Literature Survey,” Computer and Structures, 24, 985–1004 (1986).

    Article  MATH  Google Scholar 

  24. A.D. Belegundu and S.D. Rajan, “A Shape Optimization Approach Based on Natural Design Variables and Shape Functions,” Computer Methods in Applied Mechanics and Engineering, 66, 87–106 (1988).

    Article  MATH  Google Scholar 

  25. K.K. Choi and T.M. Yao, “3-D Modeling and Automatic Regridding in Shape Design Sensitivity Analysis,” Presented at the Symposium on Sensitivity Analysis in Engineering, NASA LaRC, Hampton, VA, 1986.

    Google Scholar 

  26. M.H. Imam, “Three-Dimensional Shape Optimization,” Intl. J. for Numerical Methods in Engineering, 18, 661–673 (1982).

    Article  MATH  Google Scholar 

  27. K. Dems, “Multiparameter Shape Optimization of Elastic Bars in Torsion,” Intl. J. for Numerical Methods in Engineering, 15, 1517–1539 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Braibant and C. Fleury, “Shape Optimal Design Using B-Splines,” Computer Methods in Applied Mechanics and Engineering, 44, 247–267 (1984).

    Article  MATH  Google Scholar 

  29. S.D. Rajan and J. Budiman, “A Study of Two-Dimensional Plane Elasticity Finite Elements for Optimal Design,” Mechanics of Structures and Machines, 15, 185–207 (1987).

    Article  Google Scholar 

  30. S.D. Rajan and M.A. Bhatti, “SADDLE: A Computer-Aided Structural Analysis and Dynamic Design Language–Part I. Design System,” Computers and Structures, 22, 185–204 (1986).

    Article  Google Scholar 

  31. Lin, V. C., “Variational Geometry in Computer Aided Design,” M.S. Thesis, M.I.T., May 1981.

    Google Scholar 

  32. Chyz, G. W., “Constraint Management for Constructive Geometry,” M.S. Thesis, M.I.T., June 1985.

    Google Scholar 

  33. Serrano, D., and Cossard, D. C., “Combining Mathematical Models with Geometric Models in CAE Systems,” Proceedings of 1986 Computers in Engineering Conference and Exhibit, Chicago, IL, July 1986.

    Google Scholar 

  34. Serrano, D., and Cossard, D., “Constraint Management in Conceptual Design,” Knowledge Based Exertitems in Engineering: Planning and Design, Computationii-MiChanics Publications, 1987.

    Google Scholar 

  35. Light, R. A., and Dossard, D. C., “Variational Geometry: A New Method for Modifying Part Geometry for Finite Element Analysis,” Computers and Structures, Vol. 17, 1983.

    Google Scholar 

  36. Dossard, D. C., Zuffante, R. P., and Sakurai, H., “Representing Dimensions, Tolerances, and Features in MCAE Systems,” IEEE Computer Graphics and Applications, March 1988.

    Google Scholar 

  37. Light, R. A., and Cossard, D. C., “Modification of Geometric Models Through Variational Geometry,” Computer-Aided Design, Vol. 14, No. 4, 1982.

    Google Scholar 

  38. Duff, I. S., Erisman, A. M., and Reid, J. K., Direct Mathods for Sparse Matrices, Clarendon Press, Oxford, 1986.

    Google Scholar 

  39. Rosenfeld, A. and Kak, A. C., Digital Picture Processing, Academic Press, Inc., 1982.

    Google Scholar 

  40. Ben-Israel, A., and Greville, T. N. E., Generalized Inverses: Theory and Applications, John Wiley and Sons, New York, 1974.

    MATH  Google Scholar 

  41. Mittra, R., and Klein, C. A., “The Use of Pivot Ratio as a Guide to Stability of Matrix Equation Arising in the Method of Moments,” IEEE Trans. Antennas Propagation, 1975.

    Google Scholar 

  42. Whitehead, D.S., “Effect of Mistuning on the Vibration of Turbomachine Blades Induced by Wakes,” Journal of Mechanical Engineering Science, Vol. 8, No 1, 1966, pp. 15–21.

    Article  Google Scholar 

  43. Srinivasan, A.V., “Vibrations of Bladed-Disk Assemblies–A selected Survey,” Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 106, April 1984, pp. 165–167.

    Article  Google Scholar 

  44. El-Bayoumy, L.E., and Srinivasan, A.V., “Influence of Mistuning on Rotor-Blade Vibrations,” AIAA Journal, Vol. 13, No. 4, April 1975, pp. 460–464.

    Article  Google Scholar 

  45. Ewins, D.J., and Han, Z.S., “Resonant Vibration Levels of a Mistuned Bladed Disk,” Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 106, April 1984, pp. 211–217.

    Article  Google Scholar 

  46. Macbain, J.C., and Whaley, P.W., “Maximum Resonant Response of Mistuned Bladed Disks,” Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 106, April 1984, pp. 218–223.

    Article  Google Scholar 

  47. Sogliero, G., and Srinivasan, A.V., “Fatigue Life Estimates of Mistuned Blades Via a Stochastic Approach,” AIAA Journal, Vol. 18, No. 3, 1979, pp. 318–323.

    Article  Google Scholar 

  48. Pierre, C., Tang, D.M., and Dowell, E.H., “Localized Vibrations of Disordered Multi-Span Beams: Theory and Experiment,” AIAA Paper 86–0934, 1986, pp. 445–455.

    Google Scholar 

  49. Pierre, C., “Localized Free and Forced Vibrations of Nearly Periodic Disordered Structures,” AIAA Paper No. 87–0774.

    Google Scholar 

  50. Hodges, C.H., “Confinement of Vibration by Structural Irregularity,” Journal of Sound and Vibration, Vol. 82, No. 3, 1982, pp. 411–424.

    Article  MathSciNet  Google Scholar 

  51. Madsen, H. O., S. Krenk and N. C. Lind, 1986, Methods of Structural Safety, Prentice-Hall Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  52. Hohenbichler, M. and R. Rackwitz, 1981, “Nonnormal Dependent Vectors in Structural Reliability”, Journal of the Engineering Mechanics Division, ASCE, Vol. 107, pp. 1227–1238.

    Google Scholar 

  53. Ditlevsen, O. and P. Bjerager, 1986, “Methods of Structural Systems Reliability, Structural Safety, Vol. 3, pp. 195–229.

    Google Scholar 

  54. Det norske Veritas, 1986, PROBAN User’s Manual, A. S. Veritas Research Technical Report, Oslo, Norway.

    Google Scholar 

  55. Technical University of Munich, 1985, User’s Manual for Structural Reliability Programs CUTALG-FORM SORM-SYSREL, Munich, W. Germany.

    Google Scholar 

  56. Diamantidis D., 1987, “Reliability Assessment of Existing Structures, Engineering Structures, Vol. 9, pp. 177–182.

    Google Scholar 

  57. Madsen, H. O.: 1985, “Random Fatigue Crack Growth and Inspection” in Structural Safety and Reliability, Proceedings of ICOSSAR ‘85, Kobe, Japan, Vol. 1, pp. 475–484.

    Google Scholar 

  58. Diamantidis, D. and J. Lereim, 1987, “Calibration of Technical Standards for Marine Structures”, in Proceedings of Marine Structural Reliability Symposium, Arlington, VA, pp. 91–98.

    Google Scholar 

  59. The Nordic Committee on Building Regulations, 1978, “Recommendations for Loading and Safety Regulations for Structural Design”, NKBReport, No. 36, Copenhagen, Denmark.

    Google Scholar 

  60. Heller, R. A. and Thangjitham, S., “Probabilistic Methods in Thermal Stress Analysis,” Chapter 4 in Thermal Stresses ll, R. B. Hetnarski, Elsevier Science Publishers, Amsterdam, the Netherland, 1987, pp. 189–265.

    Google Scholar 

  61. Thangjitham, S., Heller, R. A., and M. P. Singh, “Frequency Response Functions for Thermal Stresses in Multilayered Cylindrical Structures,” Journal of Thermal Stresses, Vol. 9, No. 2, 1986, pp. 133–150.

    Article  Google Scholar 

  62. Ang, A. H-S. and Tang, W. H., Probability Concepts in Engineering Planning and Design, Vol. II: Decision, Risk, and Reliability, John Wiley & Sons, New York, 1984.

    Google Scholar 

  63. Rackwitz, R. and Fiessler, B., “Structural Reliability under Combined Random Load Sequences,” Computers and Structures, Vol. 9, November 1978, pp. 489–494.

    Article  MATH  Google Scholar 

  64. Wirsching, Paul. H., Statistical Summaries of Fatigue Data for Design Purposes, NASA Contractor Report 3697, 1983.

    Google Scholar 

  65. Taguchi, G., System of Experimental Design, Vol. 1 and 2, UNIPUB, White Plains, N.Y., 1987.

    Google Scholar 

  66. Kackar, R. N., Off-line Quality Control, Parameter Design and Taguchi Method, Journal of Quality Technology, Vol. 17, 1985.

    Google Scholar 

  67. De Vries, R.,I., Saha, N. K., Surulinarayanasami, P., and Zebrowski, M. P., “Structural Optimization of Beam Sections for Minimum Weight Subject to Inertial and Crush Strength Constraints”, Sixth International Conference on Vehicle Structural Mechanics, Detroit, Michigan, April 22–24, 1986, pp. 47–51.

    Google Scholar 

  68. Chang, D. C., “Effects of Flexible Connections on Body Structural Response”, SAE Transactions, Vol. 83, Paper No. 740071, pp. 233–244, 1974.

    Google Scholar 

  69. Ding, Y., and Esping, B. I. D., “Optimum Design of Beams with Different Cross-Sectional Shapes”, Computers and Structures, Vol. 24, No. 5, pp. 707–726, 1986.

    Article  MATH  Google Scholar 

  70. Hornlein, H. R. E. M., “Take-Off in Optimum Structural Design”, NATO/NASA/NSF/USAF Advanced Study Institute, Computer Aided Optimal Design, Vol. 3, Troia, Portugal, June 29–July 11, 1986, pp. 176–200.

    Google Scholar 

  71. Haririan, M., Paeng, J. K., and Belsare, S. V., “STROPT–The Structural Optimization System”, Proceedings of the Seventh International Conference on Vehicle Structural Mechanics“, Detroit, Michigan, April 11–13, 1988, pp. 37–47.

    Google Scholar 

  72. Reklaitis, G. V., Ravindran, A., Ragsdell, K. M., Engineering Optimization, John Wiley & Sons, Inc., 1983.

    Google Scholar 

  73. Belsare, S. V., Optimal Structural Design through Bounding Technique, Ph.D. Dissertation, The University of Iowa, Iowa City, 1982.

    Google Scholar 

  74. Belegundu, A. D., and Arora, J. S., “A New Recursive Quadratic Programming Method with Active Set Strategy for Optimal Design”, Technical Report No. CAD-SS-82–6, College of Engineering, The University of Iowa, Iowa City, 1982.

    Google Scholar 

  75. Yoo, C. H., and Acra, S. V., “Cross-Sectional Properties of Thin Walled Multi-Cellular Section”, Computers and Structures, Vol. 22, No. 1, pp. 53–61, 1986.

    Article  Google Scholar 

  76. Heins, C. P., Bending and Torsional Design in Structural Members, Lexington Books, 1975, pp. 1–80.

    Google Scholar 

  77. Hanagud, S., Smith, Jr., C.V., and Chattopadhyay, A., “Optimal Design of a Vibrating Beam with Coupled Bending and Torsion,” AIAA Journal, Vol. 25, No. 9, September 1987, pp. 1231–1240.

    Article  MATH  Google Scholar 

  78. Grandhi, R.V., Thareja, R.T., and Haftka, R.T., “NEWSUMT — A: A General Purpose Program for Constrained Optimization Using Constraint Approximations,” ASME J. of Mechanisms, Transmissions, and Automation in Design, Vol. 107, 1985, pp. 94–99.

    Article  Google Scholar 

  79. Pyramidal Truss Core Panel Technical Bulletin, the PTC Corporation, Sacramento, CA, 1986.

    Google Scholar 

  80. Mechanics of Materials, by Gere, J. M. and Timoshenko, S. P., The Wodsworth Inc., Belmont, CA, 1984.

    Google Scholar 

  81. Pshenichny’s Linearization Method for Mechanical System Optimization,“ by Cho, K. K., Haug, E. J., Hou, J. W. and Sohoni, V. H., ASME Journal of Mechanisms, Transmissions, and Automation in Design, Ti 1, Vol. 105, pp. 97–103, 1983.

    Google Scholar 

  82. Murthy, D.V.; Kaza, K.R.V.: A Computational Procedure for Automated Flutter Analysis. NASA TM-100171 (1987).

    Google Scholar 

  83. Kaza, K.R.V. et al: Analytical and Experimental Investigation of Mistuning on Propfan Flutter. NASA TM-88959 (1987).

    Google Scholar 

  84. Kaza, K.R.V. et al: Analytical Flutter Investigation of a Composite Propfan Model. NASA TM-88944 (1987).

    Google Scholar 

  85. Johnston, R.L.: Numerical Methods. John Wiley and Sons. 1982.

    Google Scholar 

  86. Lancaster, P.: Algorithms for Lambda-Matrices. Numer. Math. 6 (1964) 388–394.

    Article  MathSciNet  MATH  Google Scholar 

  87. Williams, M.H.; Hwang, C.: Three Dimensional Unsteady Aerodynamics and Aeroelastic Response of Advanced Turboprops. Presented at the 27th Structures, Structural Dynamics and Materials Conference, San Antonio, TX (1986).

    Google Scholar 

  88. Mota Soares, C. A. and Choi, K. K., “Boundary Elements in Shape Optimal Design of Structures”, The Optimal Shape, Bennett, J. A. and Botkin, M. E. (eds.), Plenum Press, New York, 1986.

    Google Scholar 

  89. Wu, S. J., “Applications of the Boundary Element Method for Structural Shape Optimization”, Ph. D. Thesis, The University of Missouri, Columbia, 1986.

    Google Scholar 

  90. Kane, J. H. and Saigal, S., “Design Sensitivity Analysis of Solids using BEM”, J. Engng. Mech., ASCE, to appear.

    Google Scholar 

  91. Saigal, S., Aithal, R., and Kane, J. H., “Conforming Boundary Elements in Plane Elasticity for Shape Design Sensitivity”, Int. J. Num. Meth. Engng., submitted.

    Google Scholar 

  92. Barone, M. R. and Yang, R.-J., “Boundary Integral Equations for Recovery of Design Sensitivities in Shape Optimization”, AIAA J., to appear.

    Google Scholar 

  93. Saigal, S., Kane, J. H. and Aithal, R., “Semi-analytical Structural Sensitivity Formulation in Boundary Elements”, AIAA J., submitted.

    Google Scholar 

  94. Henry, D. P.,Jr., Pape, D. A., and Banerjee, P. K., “New Axisymmetric BEM Formulation for Body Forces using Particular Integrals”, J. Engng. Mech., Vol. 113, No. 5, pp. 671–688, 1987.

    Article  Google Scholar 

  95. Pape, D. A. and Banerjee, P. K., “Treatment of Body Forces in 2D Elastostatic BEM using Particular Integrals”, J. Appl. Mech., Vol. 54, pp. 866–871, Dec. 1987.

    Article  MATH  Google Scholar 

  96. Saigal, S., Borggaard, J. T. and Kane, J. H., “Boundary Element Implicit Differentiation Equations for Design Sensitivities of Axisymmetric Structures”, Int. J. Solids Struct., submitted.

    Google Scholar 

  97. Timoshenko, S., Theory of Elasticity, McGraw-Hill Book Company, New York, 1934.

    MATH  Google Scholar 

  98. Banerjee, P.K. and Butterfield, R., Bounadary Element Methods in Engineering Science, McGraw-Hill Book Co., Inc., New York 1981

    Google Scholar 

  99. Mota Soares, C.A. and Choi, K.K., “Boundary Elements in Shape Optimal Design of Structures”, in The Optimum Shape, J.A. Bennett and M.E. Botkin (editors), Plenum Press, 1986, pp. 199–232.

    Google Scholar 

  100. Kane, J.H. and Saigal, S., “Design Sensitivity Analysis of Solids Using BEM”, Journal of Engineering Mechanics, ASCE, to appear.

    Google Scholar 

  101. Saigal, S., Aithal, R., and Kane, J., H., “Conforming Boundary Elements in Plane Elasticity for Shape Design Sensitivity”, Int. J. Num. Meth. Engng., to appear.

    Google Scholar 

  102. Saigal, S., Aithal, R., and Kane, J., H.,“ A Semi-Analytic Approach to Structural Design Sensitivity Analysis Using the BEM”, to appear.

    Google Scholar 

  103. H. Okada, H. Rajiyah, and S. N. Atluri, ‘Non-Hyper-Singular Integral- Representations for Velocity (Displacement) Gradients in Elastic/Plastic Solids (Small or Finite Deformation)’, Comput. Mech. to appear.

    Google Scholar 

  104. Adelman, H.M. and Haftka, R.T., “Sensitivity Analysis of Discrete Structural Systems”, American Institute of Aeronautics and.Astronautics Journal, Vol. 24, No. 5, (1986a), pp. 823–832.

    Article  Google Scholar 

  105. Adelman, H.M. and Haftka, R.T. (Eds.), “Sensitivity Analysis in Engineering”, NASA-CP-2457, Proceedings of the NASA Symposium, NASA Langley Research Center, Hampton, VA., 1986b.

    Google Scholar 

  106. Ryu, Y.S., Haririan, M., Wu, C.C. and Arora, J.S., “Structural Design Sensitivity Analysis of Nonlinear Response”, Computers and Structures, Vol. 21, No. 1 /2, (1985), pp. 245–255.

    Article  Google Scholar 

  107. Haririan, M., Cardoso, J.B. and Arora, J.S., “Use of ADINA for Design Optimization of Nonlinear Structures,” Computers and Structures, Vol. 26, No. 1 /2, (1987), pp. 123–134.

    Article  MATH  Google Scholar 

  108. Arora, J.S. and Wu, C.C., “Design Sensitivity Analysis and Optimization of Nonlinear Structures”, Proceedings of NATO Advanced Study Institute on Computer-Aided Optimal Design, C. A. Mota Soares (Ed.), Portugal, Series F: Computer and Systems Sciences, Vol. 27, Springer-Verlag, New York, (1987), pp. 589–604.

    Google Scholar 

  109. Wu, C.C. and Arora, J.S., “Simultaneous Analysis and Design Optimization of Nonlinear Response”, Engineering with Computers, Vol. 2, No. 1, (1987a), pp. 5363.

    Article  Google Scholar 

  110. Wu, C.C. and Arora, J.S., “Design Sensitivity Analysis of Nonlinear Response Using Incremental Procedure,” AIAA Journal, Vol. 25, No. 8, (1987b), pp. 1118–1125.

    Google Scholar 

  111. Wu, C.C. and Arora, J.S., “Design Sensitivity Analysis of Nonlinear Buckling Load,” Computational Mechanics, Vol. 3, No. 2, (1988), pp. 129–140.

    Article  MATH  Google Scholar 

  112. Cardoso, J.B. and Arora J.S., “A Variational Method for Design Sensitivity Analysis in Nonlinear Structural Mechanics”, American Institute of Aeronautics and Astronautics Journal, to appear (1988).

    Google Scholar 

  113. Cardoso, J.B. and Arora, J.S., Design Sensitivity Analysis and Optimization of Nonlinear Structures - A Unified Approach, Technical Report No. ODL-88. 3, Optimal Design Laboratory, College of Engineering, The University of Iowa, Iowa City, IA, February 1988.

    Google Scholar 

  114. Henrici, P., “Elements of Numerical Analysis”, Wiley, 1964.

    Google Scholar 

  115. Ralston, A., “A First Course in Numerical Analysis”, Mc. Graw Hill, 1965.

    MATH  Google Scholar 

  116. Phanslakar, S. R., “Matrix iterative Methods for Structural Reanalysis”, Computers & Structures, Vol. 4, pp. 779–800, 1974.

    Article  MathSciNet  Google Scholar 

  117. Kirsch, U., “Optimum Structural Design. Concepts, Methods and Applications”, Mc. Graw Hill, 1981.

    Google Scholar 

  118. Nó, M. and Lopez-Linares, S., “RGC, an Efficient and Robust Reanalysis Rechnique”, to be published.

    Google Scholar 

  119. Kreyszig, (1972) ‘ADVANCED ENGINEERING MATHEMATICS’ John Wiley and Sons Inc., Chapter 8 (spanish version, Editorial Limusa, Mexico pp. 387–449 ).

    Google Scholar 

  120. Wylie, C. R. (1982) ‘ADVANCED ENGINEERING MATHEMATICS’, McGraw Hill, New York, Chapter 12 and 13 (spanish version, McGraw Hill Mexico, pp. 655–760 ).

    Google Scholar 

  121. Eberhardt, A.C. and Williard G.H. (1987) ‘CALCULATING PRECISE CROSS-SECTIONAL PROPERTIES FOR COMPLEX GEOMETRIES’, Computers in Mechanical Engineering, Sep-Oct, pp. 32–37

    Google Scholar 

  122. Fabrikant, V.I., Latinovic, V., and Sankar, T.S.,(1985) ‘COUNTOUR INTEGRATION ON THE GRAPHICS SCREEN AND ITS APPLICATION IN CADCAM’, Computers in Mechanical Engineering, Vol. 17, n.2, Mar, pp. 60–68

    Google Scholar 

  123. Henry, Chas (1987) ‘CALCULATING MOMENT OF INERTIA WITH AUTOLISP’, Machine Design, September, pp. 151–152

    Google Scholar 

  124. Miles, R.G., and Tough, J.G.,(1983) ‘A METHOD FOR THE COMPUTATION OF INERTIAL PROPERTIES FOR GENERAL AREAS’, Computer-Aided Design., Vol.15, n.4, July, pp. 196–200

    Google Scholar 

  125. Stolk, R. and Ettershank, G. (1987) ‘CALCULATING THE AREA OF AN IRREGULAR SHAPE’, Byte, Feb, pp. 135–136

    Google Scholar 

  126. Tymon, Frank. (1986) ‘THE UNIVERSAL AREA CALCULATOR’, Computer Shopper, Sep, pp. 18–24

    Google Scholar 

  127. Tristan-Lopez, A. (1988) ‘CALCULATING FUNCTIONALS FOR ARBITRARY GEOMETRIES’ Internal report, IMEC, 20 pp.

    Google Scholar 

  128. Foley, J.D.; Van Dam, A.: Fundamentals of Interactive Computer Graphics. Addison and Wesley, 1984.

    Google Scholar 

  129. Brooks, R.A.: Symbolic reasoning among 3-D models and 2-D images. 1981, Artificial Intelligence.

    Google Scholar 

  130. Ferber, J.: Systemes experts et approches orientes objets. Avignon 86, Tome]. p 525–547.

    Google Scholar 

  131. Maher M., Fenves, S.: HI-RISE: an expert system for the preliminary structural design of high rise buildings. IFIP Working group 5.2, Budapest Hungary, September 1984, Knowledge Engineering in CAD.

    Google Scholar 

  132. Mitchell, T.; Steinberg, L.; Shulman, J.: Vexed: a knowledge based VLSI Design Consultant. July 1985, rutgers Technical Report LCSR-TR 57.

    Google Scholar 

  133. Mittal, S.; Dym, C.L.; Morjaria, M.: PRIDE: An expert system for the design of paper handling systems. July 1986, pp 102–114.

    Google Scholar 

  134. Guide de l’utilisateur Smeci V 1.2. Document interne, INRIA Sophia-Antipolis (Mars 1987 ).

    Google Scholar 

  135. Trousse, B.: EXSAT: système expert configurateur de satellites de télécommunications. Septièmes journées internationales Avignon 87, Tome 1 p 335–350.

    Google Scholar 

  136. Trousse, B.: Bénéfices d’une approche orientée objet pour un environnement de CAO. MICAD 88, Tome 1, pp 313–328, 23–27 Mars 88, Paris.

    Google Scholar 

  137. Wing, J.; Arbab, F.: Geometric reasoning: a new paradigm for processing geometric. 1985, Technical Report, CMU-CS-85–114, 22 pages, CMU.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Kumar, V. et al. (1989). Computer-Aided Design. In: Prasad, B., Dwivedi, S.N., Irani, K.B. (eds) CAD/CAM Robotics and Factories of the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52323-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52323-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52325-0

  • Online ISBN: 978-3-642-52323-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics