Advertisement

Multiple Tests und Fehler III. Art

  • Helmut Finner
Part of the Medizinische Informatik und Statistik book series (MEDINFO, volume 70)

Zusammenfassung

Es werden sequentiell verwerfende Testprozeduren für Hypothesen mit zweiseitigen Alternativen betrachtet. Bis heute ist nur in wenigen Spezialfällen bekannt, welche dieser Testprozeduren auch einseitige Entscheidungen liefern, ohne dadurch das multiple Niveau α zu verletzen. Es wird gezeigt, daß der modifizierte Scheffé—Test in Normalverteilungsmodellen mit bekannter Varianz diese Eigenschaft hat.

Schlagwörter

Multiple Tests multiples Niveau α Abschlußprinzip Abschlußtest Fehler III. Art einseitige Hypothesen lineare Kontraste modifizierter Scheffé—Test 

Multiple Tests and Directional Errors

Summary

In this paper sequentially rejective test procedures for hypotheses with two—sided alternatives are considered. Until today it is known only in a few cases which of these procedures yield in addition one—sided decisions without violating the multiple level of significance α. It is shown that the modified Scheffé procedure in models assuming normal distributions with known variance has this property.

Key words and phrases

Multiple tests multiple level of significance closure principle closed test procedure directional errors one—sided hypotheses linear contrasts modified S—procedure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. BAUER, P., HACKL, P., HOMMEL, G., SONNEMANN, E. (1986). Multiple testing of pairs of one-sided hypotheses. Metrika 33, 121–127.MathSciNetMATHCrossRefGoogle Scholar
  2. HOLM, S. (1977). Sequentially rejective multiple test procedures. Statistical Research Report, Inst. Math. Statist. Univ. Umea, Sweden.Google Scholar
  3. HOLM,S. (1979a). A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6, 65–70.MathSciNetMATHGoogle Scholar
  4. HOLM, S. (1979b). A stagewise directional test based on t statistics. Research Report 1979–3, Institute of Mathematics, Chalmers University of Technology, Gothenburg 1979 A.Google Scholar
  5. LEHMANN, E.L. (1986). Testing Statistical Hypotheses. 2nd Ed., John Wiley & Sons, New York.MATHGoogle Scholar
  6. MARCUS, R., PERITZ, E. and GABRIEL, K.R. (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63, 655–660.MathSciNetMATHCrossRefGoogle Scholar
  7. SCHEFFE, H. (1953). A method for judging all contrasts in the analysis of variance. Biometrika 40, 87–104.MathSciNetMATHGoogle Scholar
  8. SCHEFFE, H. (1970). Multiple testing versus multiple estimation. Improper confidence sets. Estimation of directions and ratios. Ann. Math. Stat. 41, 1–29.Google Scholar
  9. SHAFFER, J.P. (1980). Control of directional errors with stagewise multiple test procedures. Ann. Stat. 8, 1342–1347.Google Scholar
  10. SONNEMANN, E. (1982). Allgemeine Lösungen multipler Testprobleme. EDV in Medizin and Biologie 13, 120–128.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Helmut Finner
    • 1
  1. 1.FB IV — Mathematik/StatistikUniversität TrierTrierDeutschland

Personalised recommendations