Skip to main content

Lawinenlaufzeitdioden

  • Chapter
Book cover Aktive Mikrowellendioden

Part of the book series: Halbleiter-Elektronik ((HALBLEITER,volume 9))

  • 73 Accesses

Zusammenfassung

Die Erzeugung von Mikrowellenleistung mit einem in Sperrichtung gepolten pn-Übergang wurde bereits 1958 von Read [1] konzipiert. Danach kann bei geeigneter Dimensionierung die Phasendifferenz zwischen Diodenspannung und dem durch Lawinenmultiplikation erzeugten Strom, zusammen mit nachfolgender Laufzeitverzögerung in der Raumladungszone, größer als 90° sein. Dies entspricht einem negativen Wirkanteil der Diodenimpedanz, der zur Verstärkung von Signalen oder zur Entdämpfung eines Resonators verwendet werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 1

  1. Read, W. T.: A proposed high-frequency, negative resistance diode. Bell Syst. Tech. J. 37 (1958) 401–446

    Google Scholar 

  2. Johnston, R. L.; De Loach, B.C.; Cohen, B. G.: A silicon diode microwave oscillator. Bell Syst. Tech. J. 44 (1965) 369–372

    Google Scholar 

  3. Scharfetter, D.L.; Evans, W.J.; John ton, R. L.: Double-drift-region (p + pnn + ) avalanche diode oscillators. Proc. IEEE 58 (1970) 1131–1133

    Article  Google Scholar 

  4. Prager, H.J.; Chang, K.K.N.; Weisbrod, S.: High-power, high efficiency silicon avalanche diodes at ultra high frequencies. Proc. IEEE 55 (1967) 586–587

    Article  Google Scholar 

  5. Salmer, G.; Pribetich, J.; Farayre A.; Kramer, B.: Theoretical and experimental study of GaAs Impatt oscillator efficiency. J. Appl. Phys. 44 (1973) 314–324

    Article  Google Scholar 

  6. Kuvâs, R.L.; Schroeder, W. E.: Premature collection mode in Impatt diodes. IEEE ED-22 (1975) 549–558

    Google Scholar 

  7. Constant, E.; Mircea, A.; Pribetich, J.; Farayre, J.: Effect of transferred-electron velocity modulation in high-efficiency GaAs Impatt-diodes. J. Appl. Phys. 46 (1975) 3934–3940

    Article  Google Scholar 

  8. Culshaw, B.; Giblin, R.A.; Blakey, P.A.: Avalanche diode oscillators. London: Taylor and Francis 1978

    Google Scholar 

  9. Kuvås, R.L.; Immorlica, A.A.; Luddington, B.W.; Szalkowski, F.J.: Heterojunction Impatt diodes: Theoretical performance and material development studies. Proc. 6th Biennial Cornell Electrical Eng. Conf., Aug. 16–18, 1977, pp 247–253.

    Google Scholar 

  10. Sze, S. M.: Physics of semiconductor devices. New York: Wiley and Sons 1969

    Google Scholar 

  11. Schroeder, W. E.; Haddad, G. I.: Nonlinear properties of Impatt devices. Proc. IEEE 61 (1973) 153–182

    Article  Google Scholar 

  12. Bauhahn, P.; Haddad, G.I.: Impatt device simulation and properties. IEEE Trans. ED-24 (1977) 634–642

    Google Scholar 

  13. Blakey, P. A.: Culshaw B.; Giblin, R. A.: Comprehensive models for the analysis of high-efficiency GaAs Impatt’s. IEEE Trans. ED-25 (1978) 674–682

    Google Scholar 

  14. Gilden, M.; Hiñes, M.E.: Electronic tuning effects in the Read microwave avalanche diode. IEEE Trans. ED-13 (1966) 169–175.

    Google Scholar 

  15. Kuvâs, R.; Lee, C.A.: Carrier diffusion in semiconductor avalanches. J. Appl. Phys. 41 (1970) 3108–3116

    Article  Google Scholar 

  16. Hulin, R.: Großsignalmodell von Lawinenlaufzeitdioden. Diss. TU Braunschweig 1973

    Google Scholar 

  17. Statz, H.; Haus, H.A.; Pucel, R. A.: Large-signal dynamic loss in Gallium Arsenide Read avalanche diodes. IEEE ED-25 (1978) 22–33

    Google Scholar 

  18. Misawa, T.: Impatt diodes. Semiconductors and semimetals 7 (1971) Part B. New York: Academic Press

    Google Scholar 

  19. Gummel, H. K.; Blue, J. L.: A small-signal theory of avalanche noise in Impatt-diodes. IEEE Trans. ED-14 (1967) 563–580

    Google Scholar 

  20. Hulin, R.; Claassen, M.; Harth, W.: Circuit representation of avalanche region of Impatt diodes for different carrier velocities and ionisation rates for electrons and holes. Electron. Lett. 6 (1970) 849–850

    Article  Google Scholar 

  21. Tager, A. S.: The avalanche-transit diode and its use in microwaves. Sov. Phys. Usb. 9 (1967) 892–912

    Article  Google Scholar 

  22. Unger, H.-G. und Harth, W.: Hochfrequenz-Halbleiterelektronik. Stuttgart: Hirzel 1972

    Google Scholar 

  23. Harth, W.: Resonance and parametric effects in Impatt diodes. IEEE Trans. ED-17 (1970) 282–289

    Google Scholar 

  24. Misawa, T.: Saturation current and large-signal operation of a Read-diode. Solid State Electron. 13 (1970) 1363–1368

    Article  Google Scholar 

  25. Blakey, P.A.; Culshaw, B.; Giblin, R.A.: Flat-field approximation: A model for drift region in high-efficiency Impatts. Solid State Electron Devices 1 (1977) 57–61

    Article  Google Scholar 

  26. Culshaw, B.; Blakey, P.A.; Giblin, R.A.: Chargelimited domains in Gallium-Arsenide avalanche diodes. Electron. Lett. 11 (1975) 102–104

    Article  Google Scholar 

  27. Schroeder, W. E.; Haddad, G. I.: Avalanche region width in various structures of Impatt-diodes. Proc. IEEE 59 (1971) 1245–1248

    Article  Google Scholar 

  28. Van Iperen, B. B.; Tjassens, H.: Influence of carrier velocity saturation in the unswept layer on the efficiency of avalanche transit time diodes. Proc. IEEE 59 (1971) 1032–1033

    Article  Google Scholar 

  29. Freyer, J.; Harth, W.: Unveröffentlichtes Manuskript 1978

    Google Scholar 

  30. Freyer, J.: Double-diffused Impatt diodes without substrate for X-Band frequencies. Solid State Electron. 19 (1976) 419–420

    Article  Google Scholar 

  31. Van Iperen, B.B.; Tjassens, H.: Measurement of largesignal impedance, optimum a.c. voltage and efficiency in Sipnn + , npp + and GaAs Schottky barrier avalanche transit time diodes. Proc. MOGA Conference, Amsterdam 1970, 7–27–7–32 Amsterdam: Kluwer-Deventer 1970

    Google Scholar 

  32. Kovel, S.R.; Gibbons, G.: The effect of unswept epitaxial material on the microwave efficiency of Impattdiodes. Proc. IEEE 55 (1967) 2066–2067

    Article  Google Scholar 

  33. Küpper, P.; Freyer, J.: Unveröffentlichtes Manuskript.

    Google Scholar 

  34. Van Iperen, B. B.; Tjassens, H.; Goedbloed, J. J.: On the relation between microwave series resistance, capacitance and output power of Impatt-diodes. Proc. IEEE 57 (1969) 1341–1342

    Article  Google Scholar 

  35. Scharfetter, D.L.: Power-impedance-frequency limitations of Impatt oscillators calculated from a scaling approximation. IEEE ED-18 (1971) 536–543

    Google Scholar 

  36. Sze, S. M.; Ryder, R. M.: Microwave avalanche diodes. Proc. IEEE 59 (1971) 1140–1154

    Article  Google Scholar 

  37. Swan, C.B.; Misawa, T.; Marinaccio L.: Composite avalanche diode structures for increased power capability. IEEE ED-14 (1967) 584–589

    Google Scholar 

  38. Höfflinger, B.: Recent development on avalanche diode oscillators. Microwave J. 12 (1969) 101–115

    Google Scholar 

  39. Scharfetter, D.L.; Evans, W.J.; Johnston, R. L.: Double-drift-region (p + pnn + ) avalanche oscillators. Proc. IEEE 58 (1970) 1131–1133

    Article  Google Scholar 

  40. Lekholm, A.; Mayr, J.: Computer optimisation of double-drift-region Impatt-diodes. Electron. Lett. 9 (1973) 64–66

    Article  Google Scholar 

  41. Seidel, T. E.; Davis, R. E.; Jglesias, D. E.: Double-drift-region ion implanted millimeter-wave Impatt-diodes. Proc. IEEE 59 (1971) 1222–1228

    Article  Google Scholar 

  42. Kim, C.K.; Mathei, W.G.; Steele, R.: GaAs Read Impatt diode oscillators. Proc. 4th Biennial Cornell Electrical Eng. Conf. 1973, Aug. 14–16, pp. 299–305

    Google Scholar 

  43. Goldwasser, R. E.; Rosztoczy, F.E.: High-efficiency GaAs lo-hi-lo Impatt devices by liquid phase epitaxy for X-band. Appl. Phys. Lett. 25 (1974) 92–94

    Article  Google Scholar 

  44. Bozler, C.O.; Donelly, J.P.; Murphy, R.A.; Laton, R.W.; Sudbury, R.W.: High-efficiency ion-implanted lo-hi-lo GaAs Impatt-diodes. Appl. Phys. Lett. 29 (1976) 123–125

    Article  Google Scholar 

  45. Claassen, M.; Küpper, P.; Harth, W.: Design considerations for GaAs high-low Impattdiodes. Int. J. Electron. 44 (1978) 145–150

    Article  Google Scholar 

  46. Blakey, P.A.: Design criteria for the „Hi“-doping density in Hi-Lo high efficiency Impatts. Electron. Lett. 12 (1976) 329–330

    Article  Google Scholar 

  47. Blakey, P. A.; Culshaw, B.; Giblin, R. A.: Criterion for the optimum punchthrough factor of Gallium-Arsenid Impattdiodes. Electron. Lett. 12 (1976) 284–286

    Article  Google Scholar 

  48. Huish, P. W.: Observed behaviour of high-efficiency Impatt diodes over a 30 % frequency range. Electron. Lett. 13 (1977) 178–179

    Article  Google Scholar 

  49. Kobayashi, K.; Hirachi, Y.; Toyama, Y.: High-power GaAs Impatt diodes. Fujitsu Sei. Tech. J. 12(1976) 107–119

    Google Scholar 

  50. Hirachi, Y.; Kobayashi, K.; Ogasawara, K.; Toyama, Y.: A new concept for high-efficiency operation of high-low-type GaAs Impatt-diodes. IEEE ED-25 (1978) 666–674

    Google Scholar 

  51. Wissemann, W.R.; Shaw, D.W.; Adams, D.W.; Hasty, T.E.: GaAs Schottky-Read diodes for X-band operation. IEEE ED-21 (1974) 317–323

    Google Scholar 

  52. Scharfetter, D. L.; Bartelink, D.J.; Gummel, H. K.; Johnston, R. L.: Computer simulation of low-frequency high-efficiency oscillation in germanium Impatt-diodes. IEEE ED-15 (1968) 691

    Google Scholar 

  53. Kostichack, D. F.: UHF avalanche diode ascillator providing 400 watts peak power and 75 percent efficiency. Proc. IEEE 58 (1970) 1282–1283

    Article  Google Scholar 

  54. Liu, S.G.; Risko, J.J.: Fabrication and performance of kilowatt L-band avalanche diodes. RCA Rev. 31 (1970) 3–19

    Google Scholar 

  55. Evans, W. J.: Computer experiments on Trapatt diodes. IEEE MTT-18 (1970) 862–871

    Google Scholar 

  56. Bartelink, D.J.; Scharfetter, D. L.: Avalanche shock fronts in pn-junctions. Appl. Phys. Lett. 14 (1969) 320–323

    Article  Google Scholar 

  57. Carroll, J.E.: Hot electron microwave generators. London: Arnold 1970

    Google Scholar 

  58. De Loach, B. C; Scharfetter, D. L.: Device physics of Trapatt oscillators. IEEE ED-17 (1970) 9–21

    Google Scholar 

  59. Yanai, H.; Torizuka, N.; Yamada, N.; Okkubo, K.: Experimental analysis for the large amplitude, high-efficiency mode of ascillation with Si-avalanche diodes. IEEE ED-17 (1970) 1067–1076

    Google Scholar 

  60. Khochnevis-Rad, M.; Lomax, R.J.; Haddad, G.I.: Transient analysis of the Trapatt mode in avalanche diodes. Solid State Electron. 21 (1978) 1245–1252

    Article  Google Scholar 

  61. Evans, W.J.: Circuits for high-efficiency avalanchediode oscillators. IEEE MTT-17 (1969) 1060–1067

    Google Scholar 

  62. Mouthaan, K.: Characterization of nonlinear interactions in avalanche transit-time oscillators, frequency multipliers and frequency dividers. IEEE MTT-18 (1980) 853–862

    Google Scholar 

  63. Bogohubov, N.N.; Mitropolski, J.A.: Asymptotische Methoden in der Theorie der Nichtlinearen Schwingungen. Berlin: Akademie-Verlag 1965

    Google Scholar 

  64. Schroeder, W.E.; Haddad, G.I.: Effect of harmonic and subharmonic signals on avalanche-diode oscillator performance. IEEE MTT-18 (1970) 327–331

    Google Scholar 

  65. Swan, C. B.: Impatt oscillator performance improvement with second-harmonic tuning. Proc. IEEE 56 (1968) 1616–1617

    Article  Google Scholar 

  66. Rolland, P.A.; Salmer, G.; Derycke, A.; Michel J.: Very-high-rank avalanche diode frequency multiplier. Proc. IEEE 61 (1973) 1757–1758

    Article  Google Scholar 

  67. Evans, W.J.; Haddad, G.I.: Frequency conversion in Impatt-diodes. IEEE ED-16 (1969) 78–87

    Google Scholar 

  68. Grace, M.I.: Down conversion and sideband translation using avalanche transit time oscillators. Proc. IEEE 55 (1967) 2065–2066

    Article  Google Scholar 

  69. Brackett, C. A.: The elimination of tuning-induced burnout and bias-circuit oscillations in Impatt oscillators. Bell Syst. Tech. J. 52 (1973) 271–306

    Google Scholar 

  70. Hines, M.E.: Noise theory of the Read type avalanche diode. IEEE ED-13 158–163

    Google Scholar 

  71. Ciaassen, M.: Small-signal noise performance of Impattdiodes made from Silicon, Germanium and Gallium-Arsenide. Proc. MOGA Conference, Amsterdam 1970, 12–36 – 12–40 Amsterdam: Kluwer-Deventer 1970

    Google Scholar 

  72. Hulin, R.; Goedbloed, J.J.: Influence of carrier diffusion on the intrisic response time of semiconductor avalanches. Appl. Phys. Lett. 21 (1972) 69–71

    Article  Google Scholar 

  73. Goedbloed, J.J.: Noise in Impatt-diodes. Philips Res. Repts. Suppl. (1973) No 7.

    Google Scholar 

  74. Haus, H.A.; Statz, H.; Pucel, R.: Optimum noise measure of Impatt-diodes. IEEE MTT-19 (1971) 801–813

    Google Scholar 

  75. Scherer, E. E.: A multistage high-power avalanche amplifier at X-band. IEEE SC-4 (1969) 396–399

    Google Scholar 

  76. De Loach, B.C.; Johnston, R. L.: Avalanche transittime microwave oscillators and amplifiers. IEEE ED-13 (1966) 181–186

    Google Scholar 

  77. Kuno, H. J.; Collard, J. R.; Gobat, A. R.: Microwave amplification with GaAs avalanche diodes. Electron. Lett. 4 (1968) 540–542

    Article  Google Scholar 

  78. Cowley, A. M.; Fazarinc, F.A.; Mal, R. D.; Hamilton, S.A.; Yen, C.-S.; Zettler, R.A.: Noise and power saturation in singly tuned Impatt oscillators. IEEE SC-5 (1970) 338–345

    Google Scholar 

  79. Vlaardingerbroek, M. T.: On the signal dependence of avalanche noise generation. IEEE ED-22 (1975) 309–313

    Google Scholar 

  80. Sjölund, A.: Noise in impatt oscillators at large r. f. amplitudes. Electron. Lett. 7 (1971) 161–162

    Article  Google Scholar 

  81. Gewartowski, J. W.: Progress with cw Impatt diode circuits at microwave frequencies. IEEE MTT-27 (1979) 434–442

    Google Scholar 

  82. Mircea, A.; Constant, E.; Perichon, R.: FM noise of high-efficiency GaAs Impatt oscillators. Appl. Phys. Lett. 26 (1975) 245–248

    Article  Google Scholar 

  83. Müller, R.: Rauschen. Halbleiter-Elektronik Bd. 15. Berlin, Heidelberg, New York: Springer 1979

    Book  Google Scholar 

  84. Freyer, J.: Herstellung und Untersuchung von doppelt diffundierten Silizium-Lawinenlaufzeitdioden für X-Band Frequenzen. Diss. TU München 1977

    Google Scholar 

  85. Snapp, C. P.; Pfund, G.; Padell, A. F.: Design, performance and behaviour of pulsed and cw Silicon doubledrift Impatts. Conf. Proc. 4th European Microwave Conference, Montreux 1974, pp 168–172

    Google Scholar 

  86. Hewlett-Packard, Application Note 935

    Google Scholar 

  87. Mircea, A.; Perichon, R.: Origines et mécanismes du bruit de fond dans les diodes à avalanche et à temps de transit. Acta Electronica 17 (1974) 165–170

    Google Scholar 

  88. Ondria, J. G.; Collinet, J.-C. R.: Noise-reduction techniques of high-frequency oscillator-high order multipliers and avalanche-diode-type microwave sources. IEEE SC-4 (1969) 65–70

    Google Scholar 

  89. Harth, W.; Ulrich, G.: Q-dependence of Impatt diode f. m. noise. Electron. Lett. 5 (1969) 7–9

    Article  Google Scholar 

  90. Josenhans, J. G.: Noise spectra of Read diode and Gunn oscillators. Proc. IEEE 54 (1966) 1478–1479

    Article  Google Scholar 

  91. Ying, R. S.; Mankarous, R. S.; English, R. G.; Bower, D. E.; Coerver, L. O.: Characterization of ion-implanted Impatt oscillators. IEEE SC-3 (1968) 225–231

    Google Scholar 

  92. De Loach, B.C.: Thin skin Impatts. IEEE MTT-18 (1970) 72–74

    Google Scholar 

  93. Lee, Y. S.; Kim, C. K.: Two-watt GaAs Schottky-barrier Impatt diodes. Proc. IEEE 58 (1970) 1153–1154

    Article  Google Scholar 

  94. Kim, C.K.; Armstrong, L.D.: GaAs Schottky-barrier avalanche diodes. Solid State Electron. 13 (1970) 53–56

    Article  Google Scholar 

  95. Huang, H.-C; Levine, P.A.; Gobat, A.R.; Klatskin, J. B.: High-efficiency operation of GaAs Schottky-barrier Impatts. Proc. IEEE 60 (1972) 464–465

    Article  Google Scholar 

  96. Sze, S. M.; Lepselter, M.P.; Macdonald, R.W.: Metal semiconductor Impatt diode. Solid State Electron. 12 (1969) 107–109

    Article  Google Scholar 

  97. De Nobel, D.; Kock, H. G.: A silicon Schottky barrier avalanche transit time diode. Proc. IEEE 57 (1969) 2088

    Article  Google Scholar 

  98. Berenz, J. J.; Ying, R. S.; Lee, D. H.: C.w. operations of ion-implanted GaAs Read-Type Impatt diodes. Electron. Lett. 10 (1974) 157–158

    Article  Google Scholar 

  99. Küpper, P.; Freyer, J.: High efficiency diffused GaAs flat profile Impatt-diodes at 18 GHz. Int. J. Electron. 47 (1979) 469–474

    Article  Google Scholar 

  100. Chive, M.; Constant, E.; Levebvre, M.; Pribetich, J.: Effects of tunneling on high-efficiency avalanche diodes. Proc. IEEE 63 (1975) 824–826

    Article  Google Scholar 

  101. Swan, C.B.: Improved performance of Silicon avalanche oscillators mounted on Diamond heat sinks. Proc. IEEE 55 (1967) 1617–1618

    Article  Google Scholar 

  102. Marinaccio, L. P.: Ring-geometry Impatt oscillator diodes. Proc. IEEE 56 (1968) 1588–1589

    Article  Google Scholar 

  103. Lee, T. P.; Standley, R. D.; Misawa, T.: A 50-GHz Silicon Impatt diode oscillator and amplifier. IEEE ED-15 (1968) 741–747

    Google Scholar 

  104. Kuno, H.J.; English, D.L.: Nonlinear and largesignal characteristics of millimeter-wave Impatt amplifiers. IEEE MTT-21 (1973) 703–706

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag, Berlin, Heidelberg

About this chapter

Cite this chapter

Harth, W., Claassen, M. (1981). Lawinenlaufzeitdioden. In: Aktive Mikrowellendioden. Halbleiter-Elektronik, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52215-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52215-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10203-8

  • Online ISBN: 978-3-642-52215-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics