Phenodynamics of Production in a Mesic Deciduous Forest

  • Fred G. TaylorJr.
Part of the Ecological Studies book series (ECOLSTUD, volume 8)


Climatologists and agrometeorologists have predicted phenological events in many ways, e.g., to select optimum seeding dates (Hopkins, 1938) or to plan agricultural practices, particularly in Europe (Molga, 1962; Schnelle, 1955), as well as in crop pest control to maximize production (Hopp et al., 1969; Wallin, 1967; Woods, 1969). In terms of economic investment, quantitative phenology (phenometry) has been applied successfully to predict harvest dates, and to schedule agricultural practices, insuring both quality and an even flow of produce to food processors (Bomalaski, 1948; Brown, 1952; Katz, 1952; Newman et al., 1967; Seaton, 1955). In defining the beginning, duration, and end of seasons phenological observations may be better indices of the bioclimatic character of local areas than recordings made by mechanical instruments (Hopkins, 1918, 1938). Specific plants and selected phenological events might be useful as indicators on which to key major land management practices and productivity studies (Caprio, 1966; Lieth and Radford, 1971). The International Biological Program (IBP) has provided an impetus for incorporating phenological considerations into basic ecological studies such as analyses of ecosystems (Bliss, 1967).


Phenometry primary production phenodynamics flowering phenogram light transmission canopy thermal environment heat summation threshold phenophase pheno logical spectra growth analysis biomass indicator species population community forest ecosystem meteorology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auerbach, S. I., J. S. Olson, and H. D. Waller. 1964. Landscape investigations using caesium-137.Nature201, 761–764.CrossRefGoogle Scholar
  2. Baker, G. A., and R. M. Brooks. 1944. Climate in relation to deciduous fruit production in California. III. Effect of temperature on number of days from full bloom to harvest of apricot and prune fruits.Proc. Am. Soc. Hort. Sc. 45, 95–104.Google Scholar
  3. Bliss, L. C. 1967. Phenology program of the IBP.BioScience17, 712–714.CrossRefGoogle Scholar
  4. Bomalaski, H. H. 1948. Growing degree days. How to apply this unit to measure maturity of crops.Food Packer29, 51–69.Google Scholar
  5. Braun, E. Lucy. 1950.Deciduous Forests of Eastern North America. 596 pp. Philadelphia: Blakiston.Google Scholar
  6. Brown, D. S. 1952. Climate in relation to deciduous fruit production in California. V. The use of temperature records to predict the time of harvest of apricots.Proc. Am. Soc. Hort. Sci. 60, 197–203.Google Scholar
  7. Caprio, J. M. 1966. Patterns of plant development in the western United States.Montana Agr. Exp. Sta. Bull. 607. 42 pp.Google Scholar
  8. Cristofolini, G. 1970. Biomassa e producttivita dello strato erbaceo di un ecosistema forestale. Giorn. Bot. Ital. 104, 1–34.CrossRefGoogle Scholar
  9. Curlin, J. W. 1965. Forest management plan, AEC Oak Ridge Reservation.U.S. AEC Rept. ORNL-TM-1317.Google Scholar
  10. Daubenmire, R. F. 1959.Plants and Environments. 422pp. New York: John Wiley.Google Scholar
  11. Fenneman, N. M. 1938.Physiography of Eastern United States. 534 pp. New York: McGraw-Hill.Google Scholar
  12. Fernald, M. L. 1950.Gray s Manual of Botany.8thed., 1632 pp. New York: American Book Company.Google Scholar
  13. Harper, R. 1906. A phytogeographical sketch of the Altamaha Grit region of the coastal plain of Georgia.Ann. New York Acad. Sci. 17, 1–414.Google Scholar
  14. Holm, T. 1899.Podophyllum peltatum. Amorphological study.Bot. Gaz. 27, 419–433.CrossRefGoogle Scholar
  15. Hopkins, A. D. 1918. Periodical events and natural laws. A guide to agricultural research and practice.Monthly Weather Rev. Supplement No. 9.Google Scholar
  16. Hopkins, A. D.Bioclimatics-A science of life and climate relations.U.S. Dep. Agri. Misc. Publ. No. 280.Google Scholar
  17. Hopp, R. J., M. T. Vittum, and N. L. Canfield. 1969. Instructions for phenological observations: Persian lilac.Vermont Agr. Exp. Sta. Pamphlet 36.Google Scholar
  18. Jackson, M. T. 1966. Effects of microclimate on spring flowering phenology.Ecology47, 407–415.CrossRefGoogle Scholar
  19. Katz. Y. H. 1952. The relationship between heat unit accumulation and planting and harvesting of canning peas.Agron. J. 44, 74–78.CrossRefGoogle Scholar
  20. Kreh, H. 1965. Untersuchungen über den Aufbau und die Stoffproducktion eines Sonnen blumenbestandes.Zulassungsarbeit zur wissenschaftlichen Prüfung für das höhere Lehramt. Stuttgart: Tech. Hochsch.Google Scholar
  21. Kubicek, F. 1970. Production and phenology of the herb layer in an oak-hornbeam forest.Biologia25 (10), 651–666.Google Scholar
  22. Lieth, H. 1970. Phenology in productivity studies. InEcological StudiesVol. 1,Analysis of temperate forest ecosystems,D. E. Reichle ed. pp. 30–46. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  23. Lieth, H.The phenological viewpoint in productivity studies. InProductivity of Forest Ecosystems,P. Duvigneaud, ed. pp.71–84. Paris: UNESCO.Google Scholar
  24. Lieth, H. and J. S. Radford. 1971. Phenology, resource management, and synagraphic computer mapping.Bio Science21, 62–70.Google Scholar
  25. Molga, M. 1962. Outline of agrometeorological problems. II. InAgriculture Meteorology.Published for National Science Foundation and the Department of Agriculture by Centralny Instytut Informacji Naukowo-Technicznej I. Ekonomicznej, Warszawa.Google Scholar
  26. Newman, J. E., W. C. Cooper, W. Reuther, G. A. Cahoon, and A. Peynado. 1967.Orange fruit maturity and net heat accumulations. InGround Level Climatology, R. H. Shaw, ed. pp. 127–147. AAAS Publ. No. 86. Washington, D.C.: American Association for the Advancement of Science.Google Scholar
  27. Olson, J. S. 1965. Equations for cesium transfer in aLiriodendronforest.Health Phys. 11, 1385–1399.CrossRefGoogle Scholar
  28. Peters, L. N., J. S. Olson, and R. M. Anderson. 1969. Eight-year summary of plant soil data on 137Cs in a tagged Appalachian forest dominated byLiriodendron tulipifera. U.S. AEC Rept. ORNL-TM-2737.Google Scholar
  29. Reaumur, R. A. F. 1735. Thermometric observations made at Paris during the year 1735, compared to those made below the Equator on the Isle of Mauritius, at Algiers, and on a few of our American Islands.Paris Memoirs,Academy of Science.Google Scholar
  30. Reichle, D. E., B. E. Dinger, N. T. Edwards, W. F. Harris, and P. Sollins. 1973. Carbon flow and storage in a forest ecosystem. InCarbon and the Biosphere,G. Woodwell and E. Pecan, ed. Brookhaven Symposia in Biology.AEC Conf. 720510.Google Scholar
  31. Schnelle, F. 1955.Pflanzen-Phänologie. 299 pp. Leipzig: Akademische Verlagsgesellschaft Geest und Portig K. G.Google Scholar
  32. Scott, G. C. 1946. Quality control in canning peas and corn.Food Packer27, 40–42.Google Scholar
  33. Seaton, H. L. 1955. Scheduling plantings and predicting harvest maturities for processing vegetables.Food Technol. 9, 202–209.Google Scholar
  34. Taylor, F. G. 1969. Phenological records of vascular plants at Oak Ridge, Tennessee.ORNL-IBP-69–146pp.Google Scholar
  35. Waller, H. D., and J. S. Olson. 1967. Prompt transfers of cesium-137 to the soils of a taggedLiriodendronforest.Ecology48, 15–25.CrossRefGoogle Scholar
  36. Wallin, J. R. 1967. Ground level climate in relation to forecasting plant diseases. InGround Level Climatology,R. H. Shaw, ed. pp. 149–163. AAAS Publ. No. 86. Washington, D.C.: American Association for the Advancement of Science.Google Scholar
  37. Wang, J. Y. 1960. A critique of the heat unit approach to plant response studies.Ecology41, 785–790.CrossRefGoogle Scholar
  38. Woods, C. 1969. Spore trap serves as“early warning system”for leaf blight of sweet corn.Sunshine State Agr. Res. Rept. 14, 9–12.Google Scholar
  39. Woods, F. W., and R. E. Shanks. 1959. Natural replacement of chestnut by other species in the Great Smoky Mountains National Park.Ecology40, 349–361.CrossRefGoogle Scholar
  40. Yocum, C. S., L. H. Allen, and E. R. Lemon. 1964. Photosynthesis under field conditions.VI. Solar radiation balance and photosynthetic efficiency.Agron. J. 56, 249–253.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Fred G. TaylorJr.
    • 1
  1. 1.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations