SMASS: A Sequential Multi-Agent System for Social Simulation

  • Wolfgang Balzer


SMASS is a simple simulation program which can flexibly deal with many different forms of individual behavior. The combination of these features: simplicity, multiplicity of rules of behavior for one individual actor, and flexibility for the user to switch between different applications with different rule sets are rarely found in existing programs.


Cellular Automaton Propositional Attitude Main Program Action Token Message Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agre, P. (1997): Computation and Human Experience. Cambridge University Press, Cambridge/Mass.CrossRefGoogle Scholar
  2. Alterman, R. & Zito-Wolf, R. (1993): Agents, Habitats, and Routine Behavior. IJCAI-93 Vol.1, Chambery, France, 305–10.Google Scholar
  3. Axelrod, R. (1984): The Evolution of Cooperation. Basic Books, New York.Google Scholar
  4. Balzer, W. (1985): Incommensurability, Reduction, and Translation. Erkenntnis 23, 255–67.Google Scholar
  5. Balzer, W. (1989): On Incommensurability. In: Gavroglu, K. et al. (eds.): Imre Lakatos and Theories of Scientific Change. Kluwer, Dordrecht, 287–304.Google Scholar
  6. Balzer, W. (1990): A Basic Model of Social Institutions. Journal of Mathematical Sociology 16, 1–29.CrossRefGoogle Scholar
  7. Balzer, W. (1992a): Game Theory and Power Theory: A Critical Comparison. In: Wartenberg, T. (ed.): Rethinking Power. SUNY Press, Albany, 56–78.Google Scholar
  8. Balzer, W. (1992b): A Theory of Power in Small Groups. In Westmeyer, H. (ed.): The Structuralist Program in Psychology. Hogrefe and Huber, Bern, 191–210.Google Scholar
  9. Balzer, W. (1993): Soziale Institutionen, de Gruyter, Berlin.Google Scholar
  10. Balzer, W. & Brendel, K. (1996): DMASS: A Distributed Multi-Agent System for Social Simulation. manuscript.Google Scholar
  11. Carley, K. M. & Prietula, M. J. (1994): ACTS Theory: Extending the Model of Bounded Rationality. In: Carley, K. M. & Prietula, M. J. (eds.): Computational Organization Theory. Lawrence Erlbaum, Hillsdale NJ, 55–87.Google Scholar
  12. Cohen, P. R. & Levesque, H. J. (1990): Intention is Choice with Commitment. Artificial Intelligence 42, 213–61.CrossRefGoogle Scholar
  13. Davis, R. & Smith, R. G. (1983): Negotiation as a Metaphor for Distributed Problem Solving. Artificial Intelligence 20, 63–109.CrossRefGoogle Scholar
  14. Epstein, J. M. & Axtell, R. (1996): Growing Artificial Societies. MIT Press, Cambridge MA.Google Scholar
  15. Gilbert, G. N. & Doran, J. (eds), (1994): Simulating Societies. UCL Press, London.Google Scholar
  16. Goldman, I. A. (1970): A Theory of Human Action. Prentice Hall, Englewood Cliffs.Google Scholar
  17. Hegselmann, R., Müller, U., Troitzsch, K. G. (eds.), (1996): Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View. Kluwer, Dordrecht.Google Scholar
  18. Hegselmann, R. (1996): Cellular Automata in the Social Sciences, Perspectives, Restrictions, and Artefacts. In 17., 209–33.Google Scholar
  19. Kreifelts, T. & Von Martial, F. (1991): A Negotiation Framework for Autonomous Agents. In: Demazeau, Y. & Müller, J. P. (eds.): Decentralized A.I.-2, 71–87.Google Scholar
  20. Liebrand, W. B. G & Messick, D. M. (1996): Computer Simulations of Sustainable Cooperation in Social Dilemmas. In 17., 235–47.Google Scholar
  21. Man Kit Chang & Carson C. Woo (1992): SANP: A Communication Level Protocol for Negatioations. In: Werner, E. & Demazeau, Y. (eds.), Decentralized A.I.-3, Elsevier, Amsterdam, 31–54.Google Scholar
  22. Mark, N. (1998): Beyond Individual Differences: Social Differentiation from First Principles. American Sociological Review 63, 309–330.CrossRefGoogle Scholar
  23. Müller, J. P., Wooldridge, M. J. and Jennings, N. R. (eds.), (1996): Intelligent Agents III. Springer, Berlin.Google Scholar
  24. Nowak, A. & Lewenstein, M. (1996): Modelling Social Change with Cellular Automata. In: 17., 249–85.Google Scholar
  25. Quine, W. v. O. (1961): Two Dogmas of Empiricism. In: Quine, W. v. O., From a Logical Point of View. Harvard University Press, Cambridge, Mass., 20–46.Google Scholar
  26. Rao, A. S. & Georgeff, M. P. (1991): Modelling Rational Agents within a BDI-Architecture. In: Fikes, R. & Sandewall, E. (eds.): Proceedings of Knowledge Representation and Reasoning (KR+R-91). Morgan Kaufmann, 473–84.Google Scholar
  27. Schelling, T. C. (1971): Dynamic Models of Segregation. Journal of Mathematical Sociology 1, 143–86.CrossRefGoogle Scholar
  28. Schiffer, R. (1987): Remnants of Meaning. MIT Press, Cambridge/Mass.Google Scholar
  29. Schüssler, R. (1990): Kooperation unter Egoisten: Vier Dilemmata. Oldenbourg, München. SWARM:
  30. Uhrmacher, A. M. (1997): Concepts of Object-and Agent-oriented Simulation. Transactions of the Society for Computer Simulation International 14, 59–68.Google Scholar
  31. Wielemaker, J. (1993): SWI-Prolog 1.8, Reference Manual. University of Amsterdam, Dept. of Social Science Informatics.Google Scholar
  32. Wielemaker, J. (1996): Programming in XPCE/Prolog. University of Amsterdam, Dept. of Social Science Informatics.Google Scholar
  33. Wooldridge, M. J. & Jennings, N. R. (eds.), (1991): Intelligent Agents. Springer, Berlin.Google Scholar
  34. Wooldridge, M. J., Müller, J. P. and Taube, M. (eds.), (1995): Intelligent Agents II. Springer, Berlin.Google Scholar

Copyright information

© Physica-Verlag Heidelberg 2000

Authors and Affiliations

  • Wolfgang Balzer
    • 1
  1. 1.University of MunichGermany

Personalised recommendations