Design of a Controller for Magnetic Levitation

  • P. S. Pierri
  • P. S. Pereira da Silva
  • F. Betti
Conference paper


In this work we will apply a linear quadratic regulator for the controller of the magnetic levitation of a rigid body. A successfull implementation with a diferentiator to estimate the velocity is showed, using a linear and not noisy displacement sensor. Another implementation with a pragmatic control policy that worked well with a noisy and strongly nonlinear sensor is presented.


Linear Quadratic Regulator Magnetic Bearing Magnetic Levitation Inductive Sensor Magnetic Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Safonov, M. G. and M. Athans, “Gain and phase margins for Multiloop LQ6 regulator”, IEEE Trans. Automat. Contr., Apr. 1977.Google Scholar
  2. 2.
    Doyle, J. C., “Guaranteed margins for LQ6 regulators”, IEEE Trans. Automat. Contr., vol. Ac-23, pp. 756–757, Aug. 1978.Google Scholar
  3. 3.
    Anderson, B. D. O. and J. B. Moore, “Linear optimal control”, Prentice Hall, Englewood Cliffs, N. J., 1971.Google Scholar
  4. 4.
    Schweitzer, G. and H. Ulbrich, “Magnetic Bearings — A novel type of suspension”, Sec. Intern. Conf. on vibration in rotating machinery, Institution of Mechanical Engineers, London, Cambridge, 1988.Google Scholar
  5. 5.
    Deboni, J. E. Z. e W. R. Mello, “Estudos de controle otimo para levitaçao magnética”, COPESP, internal report, 1986.Google Scholar
  6. 6.
    Traxler, A. and G. Schweitzer, “Measurement of the force characterist contactless eletromagnetic rotor bearing”, IMEKO Intern Measurem. Conf, Symposium on Measurement and Estimation, Brixen, Italy, May, 1984, pp. 187–191.Google Scholar
  7. 7.
    Kailath, T., “Linear systems”. Prentice Hall, Englewood Cliffs, N. J., 1980.MATHGoogle Scholar
  8. 8.
    Okada, T., Kihara, M. and H. Furihata, “Robust control systems with observers”, Int. J. Contr., vol. 41, num. 5, 1987, pp. 1207–1219.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Tsui, C. C., “On preserving the robustness of an optimal control system with observers”, IEEE Trans. Automat. Contr., vol Ac-32, PP. 823–826, Sep. 1987.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. S. Pierri
    • 1
  • P. S. Pereira da Silva
    • 1
  • F. Betti
    • 1
  1. 1.COPESP II - Av. Prof. Lineu PrestesUSP - Sao Paulo, SPBrasil

Personalised recommendations