Skip to main content

Part of the book series: Werkstoff-Forschung und -Technik ((WFT,volume 8))

Zusammenfassung

Unter Kriechen versteht man die zeitabhängige Längenänderung eines unter mechanischer Spannung stehenden Bauteils bzw. die Dehnungsänderung eines Volumenelements des betrachteten Materials. Wird ein Stab mit einer Zugspannung σ bei einer genügend hohen Temperatur belastet, dann wird häufig ein zeitlicher Verlauf der Dehnung beobachtet, wie er in Abb. 9.1 dargestellt ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 9

  1. R. Kossowsky, D.G. Miller, E.S. Diaz, Tensile and creep strength of hot-pressed Si3N4, Journal of Materials Science 10, 1975, 983–997

    Article  CAS  Google Scholar 

  2. R.M. Arons, J.K. Tien, Creep and strain recovery in hot-pressed silicon nitride, Journal of Materials Science 15, 1980, 2046–2058

    Article  CAS  Google Scholar 

  3. W. Gebhard, Die Ermittlung der Warmfestigkeit keramischer Werkstoffe, DFVLR-Mitteilungen 81–03, 1981, Köln

    Google Scholar 

  4. E.N. Andrade, The viscous flow in metals and allied phenomena, Proceedings of the Royal Society A 84 (1910), London

    Google Scholar 

  5. P.G. McVetty, Working stresses for high temperature service, Mechanical Engineering 56, 1934, 149

    Google Scholar 

  6. F.H. Norton, Creep of steel at high temperatures, McGraw Hill, 1929, New York

    Google Scholar 

  7. R.W. Bailey, Creep of steel under simple and compound stresses, and the use of high initial temperature in steam power plants, Transactions of the World Power Conference, Bd. 3, 1089, Tokyo 1929

    Google Scholar 

  8. C.R. Söderberg, The interpretation of creep tests for machinedesign, Transactions of the ASME 58, 1936, 733–743

    Google Scholar 

  9. A. Nadai, The influence of time upon creep. The hyperbolic sine creep law, in: S. Timoshenko Anniversary Volume, New York; McMillan Co, 1938

    Google Scholar 

  10. F.F. Lange, High temperature deformation and fracture phenomena of polyphase Si3N4 materials, in: Progress in Nitrogen Ceramics, 1983, 467–490

    Google Scholar 

  11. L. Pintschovius, E. Gering, D. Munz, T. Fett, J.L. Soubeyroux, Determination of non-symmetric secondary creep behaviour of ceramics by residual stress measurement using neutron diffractometry, Journal of Materials Science Letters, 1989

    Google Scholar 

  12. T. Fett, K. Keller, M. Mißbach, D. Munz, Creep parameters of alumina containing a glass phase determined in bending creep tests, Journal of the American Ceramic Society, 1989

    Google Scholar 

  13. T.J. Chuang, Estimation of power-law creep parameters from bend test data, Journal of Materials Science 21, 1986, 156–175

    Article  Google Scholar 

  14. T. Fett, K. Keller, D. Munz, An analysis of the creep of hot-pressed silicon nitride in bending, Journal of Materials Science 23, 1988, 467–474

    Article  CAS  Google Scholar 

  15. W. Flügge, Viscoelasticity, Blaisdell Publishing Co., Waltham, Mass., 1967

    Google Scholar 

  16. G.W. Hollenberg, G.R. Terwilliger, R.S. Gordon, Calculation of stresses and strains in four-point bending creep tests, Journal of the American Ceramic Society 54, 1971, 196–199

    Article  CAS  Google Scholar 

  17. H. Cohrt, G. Grathwohl, F. Thümmler, Non-stationary stress distribution in a ceramic bending beam during constant load creep, Res Mechanica 10, 1984, 55–71

    Google Scholar 

  18. T. Fett, Stress distribution in a bending beam for cyclic loading under creep conditions, Res Mechanica 18, 1986, 95–115

    Google Scholar 

  19. I. Finnie, Method of predicting creep in tension and compression from bending tests, Journal of the American Ceramic Society 49, 1966, 218–220

    Article  CAS  Google Scholar 

  20. P.K. Talty, R.A. Dirks, Determination of tensile and compressive creep behaviour of ceramic materials from bend tests, Journal of Materials Science 13, 1978, 580–586

    Article  CAS  Google Scholar 

  21. T. Soma, Y. Ishida, M. Matsui, I. Oda, Ceramic component design for assuring long-term durability, Advanced Ceramic Materials 2, 1987, 809–812

    Google Scholar 

  22. R.W. Davidge, Perspectives for engineering ceramics in heat engines, Vortragsmanuskript der Konferenz über “High temperature alloys for gas turbines and other applications 1986”, 6.–9. Oktober, Liege, Belgien, 1986

    Google Scholar 

  23. L.M. Kachanov, The Theory of Creep, Wetherby, Boston, 1960

    Google Scholar 

  24. H. Riedel, Fracture at High Temperatures, Springer Verlag, Berlin, 1987

    Google Scholar 

  25. V. Kumar, M.D. German, C.F. Shih, An Engineering Approach for Elastic-Plastic Fracture Analysis, Electric Power Research Institute Report NP-1931, Palo Alto, 1981

    Google Scholar 

  26. G. Grathwohl, Regimes of creep and slow crack growth in high-temperature rupture of hot-pressed silicon nitride, in: Deformation of Ceramics II, Plenum Publishing Corporation, 1984, 573–586

    Google Scholar 

  27. M. Mißbach, unveröffentlichte Ergebnisse

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munz, D., Fett, T. (1989). Hochtemperaturverhalten. In: Mechanisches Verhalten keramischer Werkstoffe. Werkstoff-Forschung und -Technik, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51710-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51710-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51508-1

  • Online ISBN: 978-3-642-51710-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics