Skip to main content

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 274))

Abstract

A typical minimax model of stochastic programming can be described as minimizeT∈T,supH∈H EHf (T, ξ). Here T is a vector of decision variables, restricted to a fixed feasible set T ⊂ N. The function f to be minimized depends not only on T but also on the unknown realization of an n-dimensional random vector ξ. For that reason the expected value of f is chosen as the objective function. However, the distribution function H of ξ is not completely known to the decision maker: it may be any element of a family H of distribution functions. The supremization in the “inner problem” indicates that a worst-case approach is adopted: the decision on T in the “outer problem” is based on the most unfavorable distributions in H

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Cambanis, G. Simons, W. Stout (1976). Inequalities for Ek(X,Y) when the marginals are fixed. Z. Wahrsch. Verw. Gebiete 36, 285–294.

    Article  Google Scholar 

  2. T. Cipra (1978). Class of unimodal distributions and its transformations. Časopis Pěst. Mat. 103, 17–26.

    Google Scholar 

  3. H.J. Cleef, W. Gaul (1982). Project scheduling via stochastic programming. Math. Operationsforsch. Statist. Ser. Optim. 13, 449–469.

    Article  Google Scholar 

  4. B. Dodin (1985). Bounding the project completion time distribution in PERT networks. Oper. Res. 33, 862–881.

    Article  Google Scholar 

  5. J. Dupacova (1976). Stochastic and dynamic programming: experience in stochastic programming models. A. Prekopa (ed.). Survey of Mathematical Programming, Proceedings of the IXth International Mathematical Programming Symposium, Hungarian Academy of Sciences, Budapest, part 5, 99–105.

    Google Scholar 

  6. S.E. Elmaghraby (1967). On the expected duration of PERT type networks. Management Sci. 5, 229–306.

    Google Scholar 

  7. S.E. Elmaghraby (1977). Activity Networks, Wiley, New York-London-Sydney-Toronto .

    Google Scholar 

  8. D.R. Fulkerson (1961). A network flow computation for project cost curves. Management Sci. 7, 167–178.

    Article  Google Scholar 

  9. D.R. Fulkerson (1962). Expected critical path length in PERT type networks. Oper. Res. 10, 808–817.

    Article  Google Scholar 

  10. N. Gaffke, L. Ruschendorf (1981). On a class of extremal problems in statistics. Math. Operationsforsch. Statist. Ser. Optim. 12, 123–135.

    Article  Google Scholar 

  11. N. Gaffke, L. Ruschendorf. On the existence of probability measures with given marginals. Statist. Decisions, to appear.

    Google Scholar 

  12. U. Garcia-Palomares, E. Gine (1977). On the linear programming approach to the optimality of Prokhorov’s distance. J. Math. Anal. Appl. 60, 596–600.

    Article  Google Scholar 

  13. W. Gaul (1981). Bounds for the expected duration of a stochastic project planning model. J. Inform. Optim. Sci. 2, 45–63.

    Google Scholar 

  14. W. Gaul (1983). Bounding distributions for random project-completion-times. M.J. Beckmann, W. Eichhorn, W. Krelle (eds.). Mathematische Systemen in der Oekonomie, Königstein/Ts, 169–179.

    Google Scholar 

  15. W.-R. Heilmann (1981). A mathematical programming approach to Strassen’s theorem on distributions with given marginals. Math. Operationsforsch. Statist. Ser. Optim. 12, 593–596.

    Article  Google Scholar 

  16. H.G. Kellerer (1961). Functionen auf Produkträumen mit vorgegebenen Marginalfunktionen. Math. Ann. 144, 323–344.

    Article  Google Scholar 

  17. H.G. Kellerer (1964). Verteilungsfunktionen mit gegebenen Marginalverteilungen. Z. Wahrsch. Verw. Gebiete 3, 247–270.

    Article  Google Scholar 

  18. H.G. Kellerer (1964). Masstheoretische Marginaleroblerne. Math. Ann. 153, 168–198.

    Article  Google Scholar 

  19. H.G. Kellerer (1984). Duality theorems and probability metrics. M. IOSIFESCU (ed.). Proceedings of the Seventh Conference on Probability Theory, Rumanian Academy of Sciences, Bucuresti, 211–220.

    Google Scholar 

  20. H.G. Kellerer (1984). Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67, 339–432.

    Google Scholar 

  21. G.B. Kleindorfer (1971). Bounding distributions for a stochastic acyclic network. Oper. Res. 19, 1586–1601.

    Article  Google Scholar 

  22. W.K. Klein Haneveld (1984). Distributions with known marginals and duality of mathematical programming with application to PERT. M. IOSIFESCU (ed.). Proceedings of the Seventh Conference on Probability Theory, Rumanian Academy of Sciences, Bucuresti, 221–235.

    Google Scholar 

  23. T.L. Lai, H. Robbins (1978). A class of dependent random variables and their maxima. Z. Wahrsch. Verw. Gebiete 42, 89–111.

    Article  Google Scholar 

  24. E.L. Lehman (1966). Some concepts of dependence. Ann. Math. Statist. 37, 1137–1152.

    Article  Google Scholar 

  25. A.W. Marshall, I. Olkin (1979). Inequalities: Theory of Majorization and its Applications, Academic Press, New York-London-Toronto-Sydney-San Francisco.

    Google Scholar 

  26. J.J. Martin (1965). Distribution of the time through a directed, acyclic network. Oper. Res. 13, 46–66.

    Article  Google Scholar 

  27. I. Meilijson, A. Nadas (1979). Convex majorization with an application to the length of critical paths. J. Appl. Probab. 16, 671–677.

    Article  Google Scholar 

  28. J.J. Moder, C.R. Phillips (1964). Project Management with CPM and PERT, Reinhold, New York.

    Google Scholar 

  29. A. Nadas (1979). Probabilistic PERT. IBM J. Res. Develop. 23, 339–347.

    Article  Google Scholar 

  30. P. Robillard, M. Traham (1977). The completion time of PERT networks. Oper. Res. 25, 15–29.

    Article  Google Scholar 

  31. R.T. Rockafellar (1970). Convex Analysis, Princeton University Press, Princeton NJ.

    Google Scholar 

  32. L. Ruschendorf (1980). Inequalities for the expectation of A-monotone functions. Z. Wahrsch. Verw. gebiete 54, 341–349.

    Article  Google Scholar 

  33. L. Ruschendorf (1981). Sharpness of Fréchet-bounds. Z. Wahrsch. Verw. Gebiete 57, 293–302.

    Article  Google Scholar 

  34. L. Ruschendorf (1982). Random variables with maximum sums. Adv. in Appl. Probab. 14, 623–632.

    Article  Google Scholar 

  35. L. Ruschendorf (1983). Solution of a statistical optimization problem by rearrangement methods. Metrika 30, 55–61.

    Article  Google Scholar 

  36. L. Ruschendorf (1981). Robustness against Dependence, Report Technical University Aachen, Aachen.

    Google Scholar 

  37. G. Schay (1974). Nearest random variables with given distributions. Ann. Probab. 2, 163–166.

    Article  Google Scholar 

  38. A.W. Shogan (1977). Bounding distributions for a stochastic PERT network. Networks 7, 359–381.

    Article  Google Scholar 

  39. V. Strassen (1965). The existence of probability measures with given marginals. Ann. Math. Statist. 36, 423–439.

    Article  Google Scholar 

  40. A. Szulga (1978). On the Wasserstein metric. J. KOZESNIK (ed.). Transactions of the 8th Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Czechoslovak Academy of Sciences, Prague, Volume B, 267–273.

    Google Scholar 

  41. A. Szulga (1982). On minimal metrics in the space of random variables. Theory Probab. 2, 401–405.

    Google Scholar 

  42. W. Whitt (1976). Bivariate distributions with given marginals. Ann. Statist. 4, 1280–1289.

    Article  Google Scholar 

  43. J. Zackova (1966). On minimax solutions of stochastic linear programming problems. Casopis Pest. Mat. 91, 423–429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klein Haneveld, W.K. (1986). Robustness Against Dependence in Pert. In: Duality in Stochastic Linear and Dynamic Programming. Lecture Notes in Economics and Mathematical Systems, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51697-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51697-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16793-8

  • Online ISBN: 978-3-642-51697-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics