An Investigation on the Climatic Effect of Contrail Cirrus

  • K. N. Liou
  • S. C. Ou
  • G. Koenig
Part of the Lecture Notes in Engineering book series (LNENG, volume 60)

Abstract

High cloud cover in the absence of middle and low clouds for Salt Lake City, Utah, during the period 1949–1982 has been analyzed. A significant increase of the mean annual high cloud cover is evident from 1965 to 1982, This increase appears to coincide with the anomalous jet aircraft traffic increase during that period. Analysis of the annual surface temperature for Salt Lake City shows a noticeable increase on the mean annual basis for the period 1965–1982. We have developed a two-dimensional (2-D) cloud-climate model to investigate the perturbation of high cloud cover on the temperature fields. The model consists of a 2-D climate model and a cloud formation model that are interactive through the radiation program. The cloud covers and radiation budgets at the top of the atmosphere computed from the present model compare reasonably well with observations, A 5% uniform increase in high cloud cover at the latitudes between 20° to 70° N would produce an increase in surface temperature by about 1°K with small variations across the latitudes, The positive surface temperature feedback associated with the high cloud cover increase is due to enhanced infrared emission from the additional high cloud cover and specific humidity produced from the 2-D model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carleton, A. M., and P. J. Lamb, 1986; Jet contrails and cirrus cloud: A feasibility study employing high-resolution satellite imagery. Bull. Amer. Meteor. Soc., 67, 301–309.CrossRefGoogle Scholar
  2. Changnon, S. A., Jr., 1981; Midwestern cloud, sunshine and temperature trends since 1901: Possible evidence of jet contrail effects. J. Appl. Meteor., 20, 496–508.CrossRefGoogle Scholar
  3. Cox, S. K., 1971: Cirrus clouds and climate. J. Atmos. Sci., 28, 1513–1515.CrossRefGoogle Scholar
  4. Dutton, J. A., 1976: The Ceaseless Wind. McGraw-Hill, 579 pp.Google Scholar
  5. Freeman, K. P., and K. N. Liou, 1979: Climate effects of cirrus clouds. Adv. Geophys., 21, Academic Press, 221–234.Google Scholar
  6. Howard, J. N., J. I. F. King, and P. R. Gast, 1961: Thermal radiation. Handbook of Geophysics, MacMillan, Chapter 16.Google Scholar
  7. Hughes, N. A., 1984: Global cloud climatologies: A historical review, J.Clim. Appl. Meteor., 23, 724–751.CrossRefGoogle Scholar
  8. Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 1167–1199.CrossRefGoogle Scholar
  9. Liou, K. N., and T. Sasamori, 1975; On the transfer of solar radiation in aerosol atmospheres. J. Atmos. Sci., 32, 2166–2177.CrossRefGoogle Scholar
  10. Liou, K. N., and G. D. Wittman, 1979; Parameterization of the radiative properties of clouds. J. Atoms. Sci. , 36, 1261–1273.CrossRefGoogle Scholar
  11. Liou, K. N., and K. L. Gebhart, 1982: Numerical experiments on the thermal equilibrium temperature in cirrus cloudy atmospheres. J. Meteor. Soc. Japan, 60, 570–582.Google Scholar
  12. Liou, K. N., and S. C. Ou, 1983: Theory of equilibrium temperatures in radiative-turbulent atmospheres. J. Atmos. Sci., 40, 214–229.CrossRefGoogle Scholar
  13. Liou, K. N., S. C. Ou, and P. J. Lu, 1985; Interactive cloud formation and climatic temperature perturbations. J. Atmos. Sci., 42, 1969–1981.CrossRefGoogle Scholar
  14. London, J., 1957: A study of the atmospheric heat balance, New York University, Final Report, Contract AF19 (122)-166, 99 pp.Google Scholar
  15. Machta, L., and T. Carpenter, 1971: Trends in high cloudiness at Denver and Salt Lake City. Man’s Impact on the Climate (W. H. Mathews, W. W. Kellogg and G. D. Robinson, Eds.), MIT Press, pp. 410–415.Google Scholar
  16. Manabe, S., 1975: Cloudiness and the radiative convective equilibrium. The Changing Global Environment (S.F. Singer, Ed.), Reidel, pp. 175–176.CrossRefGoogle Scholar
  17. Manabe, S. and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241–259.CrossRefGoogle Scholar
  18. McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Voltz, and J. S. Garing, 1971: Optical properties of the atmosphere. AFCRL Environmental Research Papers, 354, 85 pp.Google Scholar
  19. Ogura, Y., and T. Takahashi, 1971: Numerical simulation of the life cycle of a thunderstorm cell, Mon. Wea. Rev., 99, 895–911.CrossRefGoogle Scholar
  20. Oort, A. H., 1983: Global Atmospheric Circulation Statistics, 1958–1973. NOAA Prof, Paper, 14, U.S. Department of Commerce, 180 pp.Google Scholar
  21. Ou, S. C., and K. N. Liou, 1984: A two-dimensional radiative-turbulent climate model. I: Sensitivity to cirrus radiative properties. J. Atmos, Sci., 41, 2289–2309.CrossRefGoogle Scholar
  22. Ou, S. C., and K. N. Liou, 1987: Effects of interactive cloud cover and liquid water content program on climatic temperature perturbations. Atmospheric Radiation: Progress and Prospects, China Science Press, Beijing, China, pp. 443–440.Google Scholar
  23. Sasamori, T., J. London, and D. V. Hoyt, 1972: Radiation budget of the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., 13, 236 pp.Google Scholar
  24. Study of Man’s Impact on Climate, 1971: Inadvertent Climate Modification. MIT Press, 308 pp.Google Scholar
  25. Stephens, G. L., G. G. Campbell, and T. H. Vonder Haar, 1981: Earth radiation budgets. J. Geophys. Res., 86, 9739–9760.CrossRefGoogle Scholar
  26. Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor, Soc., 104, 677–690.CrossRefGoogle Scholar
  27. Wendland, W. M., and R. G. Semonin, 1982: Effects of contrail cirrus on surface weather conditions in the midwest — Phase II. Illinois State Water Survey Contract Report, 298, Champaign, 95 pp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • K. N. Liou
    • 1
  • S. C. Ou
    • 1
  • G. Koenig
    • 2
  1. 1.Department of Meteorology/CARSSUniversity of UtahUSA
  2. 2.Geophysics LaboratoryHanscom Air Force BaseBedfordUSA

Personalised recommendations