Skip to main content

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 91))

  • 99 Accesses

Abstract

From the point of view of the physical sciences a living organism is a material system of staggering complexity. As a material object it must conform to all the laws of physics, yet its actual behaviour usually follows patterns which seem altogether alien to the world of physics. So, at the present stage of scientific sophistication one should study those living systems that are as simple as possible, and try to understand the physical principles which are involved in their behavior which is generally known as chemoreception (examples will be discussed shortly).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to chapter I

  1. P. Bongrand, C. Capo and R. Despieds. Physics of cell adhesion. Prog. Surface Sci. 12 (1982) 217–235.

    Article  Google Scholar 

  2. H. Tributsch. How life learned to live. MIT Press (Cambridge, Massachusetts, 1984).

    Google Scholar 

  3. Stedman’s medical dictionary. The Williams and Wilkins Company (Baltimore, 1976) 243–249.

    Google Scholar 

  4. B.B. Mandelbrot. The fractal geometry of nature. Freeman and Company (San Francisco, 1982).

    MATH  Google Scholar 

  5. A.J. Kox, J.P.J. Michels and F.W. Wiegel. Simulation of a lipid monolayer using molecular dynamics. Nature 287 (1980) 317–319.

    Article  Google Scholar 

  6. P. van der Ploeg and H.J.C. Berendsen. Molecular dynamics of a bilayer membrane. Mol. Physics 49 (1983) 233–248.

    Article  Google Scholar 

  7. J.H.J. van Opheusden. Theoretical studies of the lipid membrane and of macromolecules near a lipid membrane. Ph.D. Dissertation, Center for Theoretical Physics, Twente University of Technology (1987). Unpublished.

    Google Scholar 

  8. F.W. Wiegel and A.J. Kox. Theories of lipid monolayers. Adv. Chem. Phys. 41 (1980) 195–228.

    Article  Google Scholar 

  9. J.F. Nagle. Theory of lipid bilayer phase transitions. Ann. Rev. Phys. Chem. 31 (1980) 157–199.

    Article  Google Scholar 

  10. A.S. Perelson, C. DeLisi and F.W. Wiegel Eds. Cell Surface Dynamics: Concepts and Models (Marcel Dekker Inc., New York, 1984).

    Google Scholar 

  11. F.W. Wiegel. Ref 10 pg. 3–21.

    Google Scholar 

  12. S J. Singer and G.L. Nicolson. The fluid mosaic model of the structure of cell membranes. Science 175 (1972) 720–731.

    Article  Google Scholar 

  13. F.W. Wiegel. Conformational phase transitions and critical phenomena, Vol. 7. C. Domb and J.L. Lebowitz Eds. (Academic Press, London and New York, 1983) 100–149.

    Google Scholar 

  14. C. Blomberg. A kinetic recognition process for t RNA at the ribosome. J. Theor. Biol. 66 (1977) 307–325.

    Article  Google Scholar 

  15. G. von Heijne, L. Nilsson and C. Blomberg. Translation and messenger RNA secondary structure. J. Theor. Biol. 68 (1977) 321–329.

    Article  Google Scholar 

  16. G. von Heijne, L. Nilsson and C. Blomberg. Models for m RNA translation: theory vs. experiment. Eur. J. Biochem. 92 (1978) 397–402.

    Article  Google Scholar 

  17. G. von Heijne and C. Blomberg. The concentration dependence of the error frequencies and some related quantities in protein synthesis. J. Theor. Biol. 78 (1979) 113–120.

    Article  Google Scholar 

  18. M. Ehrenberg and C. Blomberg. Thermodynamic constraints on kinetic proofreading in biosynthetic pathways. Biophys. J. 31 (1980) 333–358.

    Article  Google Scholar 

  19. C. Blomberg, M. Ehrenberg and C.G. Kurland. Free-energy dissipation constraints on the accuracy of enzymatic selection. Quart. Rev. Biophys. 13 (1980) 231–254.

    Article  Google Scholar 

  20. C. Blomberg and M. Ehrenberg. Energy considerations for kinetic proofreading in biosynthesis. J. Theor. Biol. 88 (1981) 631–670.

    Article  Google Scholar 

  21. C. Blomberg, M. Ehrenberg and C.G. Kurland. Free-energy driven error correction in macromolecular biosynthesis: a theoretical approach. Acta Chem. Scand. B35 (1981) 223–224.

    Article  Google Scholar 

  22. C. Blomberg. Thermodynamic aspects of accuracy in the synthesis of biomolecules. Int. J. Quant. Chem. 23 (1983) 687–707.

    Article  Google Scholar 

  23. C. Blomberg. Free-energy cost and accuracy in branched selection processes of biosynthesis. Quart. Rev. Biophys. 16 (1983) 415–519.

    Article  Google Scholar 

  24. G. Adam and M. Delbrück. Reduction of dimensionality in biological diffusion processes. In: Structural Chemistry and Molecular Biology, Eds. A. Rich and N. Davidson (W.H. Freeman and Company, San Francisco, 1968) 198–215.

    Google Scholar 

  25. J.D. Murray. Lectures on Nonlinear-Differential-Equation Models in Biology (Clarendon Press, Oxford, 1977) 83–127.

    Google Scholar 

  26. J. Adler. Chemoreceptors in bacteria. Science 166 (1975) 1588–1597.

    Article  Google Scholar 

  27. J. Adler. Chemotaxis in bacteria. Ann. Rev. Biochem. 44 (1975) 341–356.

    Article  Google Scholar 

  28. H.C. Berg. Bacterial behavior. Nature 254 (1975) 389–392.

    Article  Google Scholar 

  29. H.C. Berg. Chemotaxis in bacteria. Ann. Rev. Biophys. Bioeng. 4 (1975) 119–136.

    Article  Google Scholar 

  30. H.C. Berg. How bacteria swim. Sci. Am. 233 (2) (1975) 36–44.

    Article  Google Scholar 

  31. J. Adler. The sensing of chemicals by bacteria. Sci. Am. 234 (4) (1976) 40–47.

    Article  Google Scholar 

  32. H.C. Berg and D.A. Brown. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239 (1972) 500–504.

    Article  Google Scholar 

  33. H.C. Berg and L. Turner. Movements of microorganisms in viscous enviroments. Nature 278 (1979) 349–351.

    Article  Google Scholar 

  34. H.C. Berg and E.M. Purcell. Physics of chemoreception. Biophys. J. 20 (1977) 193–219.

    Article  Google Scholar 

  35. G. DeLisi. Antigen-Antibody Interactions (Springer Verlag, New York, 1976).

    Book  MATH  Google Scholar 

  36. G.I. Bell, A.S. Perelson and G.H. Pimbley. Theoretical Immunology (Marcel Dekker Inc., New York, 1978)

    MATH  Google Scholar 

  37. J.C. Eccles. The Understanding of the Brain (McGraw-Hill, New York, 1973).

    Google Scholar 

  38. M. Chabre. Trigger and amplification mechanisms in visual phototransduction. Ann. Rev. Biophys. Chem. 14 (1985) 331–360.

    Article  Google Scholar 

  39. M. Bitenski, private communication.

    Google Scholar 

  40. J.C. Lilly. Lilly on Dolphins (Anchor Press, Garden City, 1975).

    Google Scholar 

  41. D’Arcy W. Thompson. On Growth and Form (Cambridge University Press, Cambridge, 1917, reprinted in 1943).

    Google Scholar 

  42. A.R.P. Rau. Of shapes and sizes. Sc. Today, Oct. (1977) 15–20.

    Google Scholar 

  43. P.C.W. Davies. The Accidental Universe (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  44. J.D. Barrow and F.J. Tipler. The anthropic Cosmological Principle (Oxford University Press, Oxford, 1986).

    Google Scholar 

  45. D.E. Koshland. Bacterial Chemotaxis as a Model Behavioral System (Raven Press, New York, 1980).

    Google Scholar 

  46. H.C. Berg. Random Walks in Biology (Princeton University Press, Princeton, 1983).

    Google Scholar 

  47. M. Delbrück. Mind from Matter? (Blackwell, Palo Alto, 1986).

    Google Scholar 

  48. JJ. Linderman and D.A. Lauffenburger. Receptor/Ligand Sorting along the Endocytic Pathway (Springer, New York, 1989) Lecture Notes in Biomathematics 78.

    Book  MATH  Google Scholar 

  49. A.S. Perelson Ed. Theoretical Immunology Vols. I and II (Addison-Wesley, Reading CA, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiegel, F.W. (1991). General Considerations. In: Physical Principles in Chemoreception. Lecture Notes in Biomathematics, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51673-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51673-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54319-0

  • Online ISBN: 978-3-642-51673-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics