Thermal Conductivity

  • Yuli K. Godovsky

Abstract

Most polymers are insulating systems, therefore, any electronic effects are absent in them and heat conduction occurs as a result of lattice vibrations. Theoretical consideration of the thermal conductivity of the crystalline dielectrics where the lattice vibrations can be resolved into normal modes which can then be treated as phonons leads to the Debye equation [1]
$$x = \frac{1}{3}C(T)\bar c\bar l$$
(2.1)
where C is the heat capacity per unit volume, c is the average phonon velocity and l0303 is the phonon mean free path. The temperature dependence of the thermal conductivity of crystalline solids (Fig. 2.1) can be understood according to this equation as follows. At high temperatures where most of the phonons are excited χ ~ T-1 since C constant and l0305 is proportional to T-1. With decreasing temperature the number of interacting phonons decreases exponentially and correspondingly both χ and l0305 should increase exponentially. The further decrease of temperature must lead to the situation when l0303 will be compared with the dimension of the sample and therefore its temperature dependence should disappear. The phonons then will be scattered only by the boundaries of the sample which characterized the mean free path.

Keywords

Quartz Anisotropy Total Heat Epoxy Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman R (1982) Thermal conduction in solids, Clarendon OxfordGoogle Scholar
  2. 2.
    Misnar A (1968) Thermal Conductivity of Solids, Liquids, Gases and Their Compositions (in Russian), Mir MoscowGoogle Scholar
  3. 3.
    Zeller RZ and Phol RO (1971) Phys Rev B4: 2029Google Scholar
  4. 4.
    Stephens RB (1973) Phys Rev B8: 2896Google Scholar
  5. 5.
    Stephens RB (1976) Phys Rev B13: 852Google Scholar
  6. 6.
    Phol RO and Salinger GL (1976) Ann N Y Acad Sci 279: 150CrossRefGoogle Scholar
  7. 7.
    Klemens PG (1960) In: Non crystalline solids, Frechette VC (ed), J Wiley New YorkGoogle Scholar
  8. 8.
    Oskotsky VS and Smirnov IA (1979) Defects in Crystals and Thermal Conductivity (in Russian), Nauka MoscowGoogle Scholar
  9. 9.
    Morgan GI and Smith D (1974) J Phys (C) 7: 649Google Scholar
  10. 10.
    Philips WA (1972) J Low Temp 7: 351CrossRefGoogle Scholar
  11. 11.
    Anderson PW, Halperin BJ and Varma CM (1972) Phil Mag 25: 1CrossRefGoogle Scholar
  12. 12.
    Philips WA (ed) (1981) Amorphous solids: Low temperature properties, Springer Berlin Heidelberg New YorkGoogle Scholar
  13. 13.
    Smoljakov BP and Khaimovich EP (1982) Uspekhy fisicheskich nauk (UFN) 136: 317CrossRefGoogle Scholar
  14. 14.
    Phonon Scatter Condenced Matter 5 Proc 5 Intern Conf (1986), 111, Urbana BerlinGoogle Scholar
  15. 15.
    Andersen DR (1966) Chem Rev 66: 677CrossRefGoogle Scholar
  16. 16.
    Reese W (1969) J Macromol Sci 3A: 1257Google Scholar
  17. 17.
    Godovsky YuK (1970) In: Uspekhy phys chem polym, pp 173–205, Khimija MoscowGoogle Scholar
  18. 18.
    Knappe W (1971) Adv Polym Sci 7: 477CrossRefGoogle Scholar
  19. 19.
    Godovsky YuK (1976) Thermophysical Methods of Polymers Characterization (in Russian), Khimija MoscowGoogle Scholar
  20. 20.
    Perepechko II (1980) Low Temperature Properties of Polymers, Pergamon OxfordGoogle Scholar
  21. 21.
    Choy CL (1977) Polymer 18: 984CrossRefGoogle Scholar
  22. 22.
    Reese W (1966) J Appl Phys 37: 864, 3227CrossRefGoogle Scholar
  23. 23.
    Eiermann K (1964) Kolloid Z Z Polym 198: 5CrossRefGoogle Scholar
  24. 24.
    Eiermann K (1965) Kolloid Z Z Polym 201: 3CrossRefGoogle Scholar
  25. 25.
    Burgess S and Greig D (1975) J Phys (C) 8: 1637Google Scholar
  26. 26.
    Choy CL, Wang SP and Young K (1985) J Polym Sci Polym Phys Ed 23: 1495CrossRefGoogle Scholar
  27. 27.
    Choy CL and Young K (1975) Polymer 18: 769CrossRefGoogle Scholar
  28. 28.
    Assfalg A (1975) J Phys Chem Solids 36: 1389CrossRefGoogle Scholar
  29. 29.
    Kolouch RJ and Brown RG (1968) J Appl Phys 39: 3999CrossRefGoogle Scholar
  30. 30.
    Finlayson DM and Mason PJ (1985) J Phys (C) 18: 1777, 1791Google Scholar
  31. 31.
    Choy CL and Greig D (1975) J Phys (C) 8: 3121Google Scholar
  32. 32.
    Little WA (1959) Canad J Phys 37: 334CrossRefGoogle Scholar
  33. 33.
    Bondi A (1968) Physical Properties of Molecular Crystals, Liquids and Glasses, J Wiley New YorkGoogle Scholar
  34. 34.
    Lohe P (1965) Kolloid Z 203: 115CrossRefGoogle Scholar
  35. 35.
    Hansen D and Ho CC (1965) J Polym Sci A3: 659Google Scholar
  36. 36.
    Morgan GJ and Scovell PD (1977) J Polym Sci Polym Lett 15: 193CrossRefGoogle Scholar
  37. 37.
    Fesciyan S and Frisch HL (1977) J Chem Phys 67: 5691CrossRefGoogle Scholar
  38. 38.
    Hannig J (1967) Polym Sympos C16: 2751Google Scholar
  39. 39.
    Wallace DJ, Moreland C and Picot JJC (1985) Polym Eng Sci 25: 70CrossRefGoogle Scholar
  40. 40.
    Choy CL and Greig D (1977) J Phys (C) 10: 169Google Scholar
  41. 41.
    Gibson AG, Greig D, Sabota M, Ward IM and Choy CL (1977) J Polym Sci Polym Lett 15: 183CrossRefGoogle Scholar
  42. 42.
    Choy CL, Luk WH and Chen FC (1978) Polymer 19: 155CrossRefGoogle Scholar
  43. 43.
    Choy CL, Chen FC and Luk WH (1980) J Polym Sci Polym Phys Ed 18: 1187CrossRefGoogle Scholar
  44. 44.
    Gibson AG, Greig D and Ward IM (1980) J Polym Sci Polym Phys Ed 18: 1481CrossRefGoogle Scholar
  45. 45.
    Pietralla M (1981) Colloid Polym Sci 259: 111CrossRefGoogle Scholar
  46. 46.
    Kilian GH and Pietralla M (1978) Polymer 19: 664CrossRefGoogle Scholar
  47. 47.
    Choy CL, Ong EL and Chen F (1981) J Appl Polym Sci 25: 2325CrossRefGoogle Scholar
  48. 48.
    Choy CL and Leung WP (1983) Polym Sci Polym Phys Ed 21: 1243CrossRefGoogle Scholar
  49. 49.
    Crispin AJ, Taraiya AK, Greig D and Ward M (1987) Polym Commun 28: 95Google Scholar
  50. 50.
    Crispin AJ and Greig D (1986) Polym Commun 27: 265Google Scholar
  51. 51.
    Briskman BA (1983) Uspechy Khimiji 52: 830Google Scholar
  52. 52.
    Briskman BA (1988) In: Itogy nauky i techniki, serija “Khimija i tekhnologija polymerov” 25: pp 136–194Google Scholar
  53. 53.
    Anderson P and Sundquist B (1975) J Polym Sci Polym Phys Ed 13: 243CrossRefGoogle Scholar
  54. 54.
    Anderson P (1976) Makromol Chem 177: 271CrossRefGoogle Scholar
  55. 55.
    Dietz W (1975) Colloid Polym Sci 265: 755Google Scholar
  56. 56.
    Privalko VP and Rekhteta (1989) In: Proc Xl-th AIRAPT Intern Conf, vol 4, pp 241–246, Naukova Dumka KievGoogle Scholar
  57. 57.
    Frost RS, Chen RYS and Barker RE Jr (1975) J Appl Phys 46: 4506 (1975)CrossRefGoogle Scholar
  58. 58.
    Privalko VP (1986) Molecular Structure and Properties of Polymers (in Russian), Khimija LeningradGoogle Scholar
  59. 59.
    Sundstrom DW, Lee YD (1975) J Appl Polym Sci 16: 3159CrossRefGoogle Scholar
  60. 60.
    Kusy RP and Corneliussen RD (1975) Polym Eng Sci 15: 107CrossRefGoogle Scholar
  61. 61.
    Bigg, DM (1973) Polym Eng Sci 19: 1188CrossRefGoogle Scholar
  62. 62.
    Bigg, DM (1986) Polym Composit 7: 125CrossRefGoogle Scholar
  63. 63.
    Garret KW and Rossenberg HM (1974) J Phys (D) 7: 1247Google Scholar
  64. 64.
    de Arauja FFT and Rossenberg HM (1976) J Phys (D) 9: 665Google Scholar
  65. 65.
    Schmidt C (1975) Cryogenics 15: 17CrossRefGoogle Scholar
  66. 66.
    Agari Y and Uno T (1985) J App Polym Sci 30: 2225CrossRefGoogle Scholar
  67. 67.
    Agari Y, Tanaka M, Nagai S and Uno T (1986) J Appl Polym Sci 32: 5705CrossRefGoogle Scholar
  68. 68.
    Agari Y, Ueda A, Tanaka M and Nagai S (1990) J Appl Polym Sci 40: 929CrossRefGoogle Scholar
  69. 69.
    Godovsky YuK, Kiguradze OR and Lolua DG (1986) Vysokomol Soyed 28B: 564Google Scholar
  70. 70.
    Godbee HW and Ziegler TZ (1966) J Appl Phys 37: 56CrossRefGoogle Scholar
  71. 71.
    Sundstrom DW and Chen SY (1970) J Compos Mater 4: 113Google Scholar
  72. 72.
    Dul’nev GN and Zarichnijak YuP (1974) Thermal Conductivity of Mixtures and Composite Materials (in Russian), Energija LeningradGoogle Scholar
  73. 73.
    Volkov DP and Zarichnijak YuP (1979) Mechanics of Compos Mater N5: 939Google Scholar
  74. 74.
    Dul’nev GN and Novikov W (1983) Ingenerno fisicheskii zhurnal (IFJ) 45: 443Google Scholar
  75. 75.
    Novikov W (1988) Compos Polym Mater (in Russian), N38: 17, Naukova Dumka KievGoogle Scholar
  76. 76.
    Kasen MB (1975) Cryogenics 15: 327CrossRefGoogle Scholar
  77. 77.
    Zieband H (1977) In: Polymer Engineering Composites, chap 7, Richardson MOW (ed), Applied Science Publishers LondonGoogle Scholar
  78. 78.
    Choy CL, Leung WP and Ng YK (1987) J Polym Sci Polym Phys Ed 25: 1779CrossRefGoogle Scholar
  79. 79.
    Sterzynski T and Linster JJ (1987) Polym Eng Sci 27: 906CrossRefGoogle Scholar
  80. 80.
    Ueberreiter K and Naghizadeh J (1972) Kolloid Z Z Polym 25: 927CrossRefGoogle Scholar
  81. 81.
    Okuda M and Nagashima A (1989) High Temp — High Pressure 21: 205Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Yuli K. Godovsky
    • 1
  1. 1.Karpov Institute of Physical ChemistryMoscowUSSR

Personalised recommendations