Skip to main content

Epidermal Cells

  • Chapter

Abstract

Everything that we recognize easily about insects depends upon their integument. Their segmentally repeating patterns of sense organs, muscle insertions, cuticle colours and sculpturing, and their cyclical growth with ecdyses, all result from the activities of the monolayer of cells that covers them. Regional patterns differentiate in the plane of the surface, which varies in the kind of cuticle secreted and in the nature of cell specializations as muscle insertions, sense organs and secretory cells. This is made possible by the signals specifying position in the two dimensions of the epidermal monolayer and the local reading and response to those signals. There is also differentiation in the thickness of the cuticle representing change in epidermal activity with time during the intermoult/moult sequence. In sequence or concurrently, an epidermal cell may be growing, dividing, changing a developmental commitment to be manifest later, secreting cuticle as a nutritional reserve, changing its position and the body form, or moulting and ecdysing. The interacting hormonal cues for these temporal changes have allowed the evolution of a sequential polymorphism of great complexity. This concept of the insect integument as a transcript of spatial (positional information) and temporal signals (hormones) is an elaboration of Wigglesworth’s idea of local and general factors operating in the epidermis (Wigglesworth 1940). The operation of local and general factors is easily illustrated in lepidopteran epidermal development. At particular times in the last larval stadium, epidermal cells vary in the size of their nuclei indicating their ploidy (Locke 1984). Local factors determine which cells replicate their DNA and where they divide. However, the nucleoli in these nuclei dance to a different tune. They follow a temporal pattern of enlargement for RNA synthesis that is uniform through the epithelium whatever the ploidy of the cells at that moment (Locke and Huie 1980). The stimulus for RNA synthesis and activity in relation to the intermoult/moult sequence is a general one, presumably hormonal, and is superimposed over the local stimuli controlling cell number. There is also an interaction between local and general factors. The environment allowing mitosis has itself a hormonal component.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashurst DE (1979) Haemocytes and connective tissue: a critical assessment. In: Gupta AP (ed) Insect hemocytes: development, form, functions and techniques. Cambridge Univ Press, Cambridge, pp 319–330

    Chapter  Google Scholar 

  • Ashurst DE (1982) The structure and development of insect connective tissues. In: King RC, Akai H (eds) Insect ultrastructure, vol. I. Plenum Press, New York, London, pp 485

    Google Scholar 

  • Berthold G (1977) Die Wanderung der Pigmentgranula in der Epidermis beim physiologischen Farbwechsel von Carausius morosus. J Insect Physiol 23:235–240

    Article  PubMed  CAS  Google Scholar 

  • Caveney S (1973) Stability of polarity in the epidermis of a beetle Tenebrio molitor L. Dev Biol 30:321–335

    Article  PubMed  CAS  Google Scholar 

  • Caveney S (1974) Intercellular communication in a positional field: Movement of small ions between insect epidermal cells. Dev Biol 46:311–322

    Article  Google Scholar 

  • Caveney S (1976) The insect epidermis: a functional syncytium. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam, pp 259–274

    Google Scholar 

  • Caveney S (1980) Cell communication and pattern formation in insects. In: Locke M, Smith DS (eds) Insect biology in the future “ VBW80”. Academic Press, New York, pp 565–582

    Google Scholar 

  • Caveney S, Berdan R (1982) Selectivity in junctional coupling between cells of insect tissues. In: King RC, Akai H (eds) Insect ultrastructure, vol I. Plenum Press, New York London, pp 434–465

    Google Scholar 

  • Dean RL, Bollenbacher WE, Locke M, Smith SL, Gilbert LI (1980) Haemolymph ecdysteroid levels and cellular events in the intermoult/moult sequence of Calpodes ethlius. J Insect Physiol 26:267–280

    Article  CAS  Google Scholar 

  • Diehl PA (1975) Synthesis and release of hydrocarbons by the oenocytes of the desert locust, Schistocerca gregaria. J Insect Physiol 21:1237–1246

    Article  CAS  Google Scholar 

  • Fristrom DK, Rickoll WL (1982) The morphogenesis of imaginai discs of Drosophila. In: King RC, Akai H (eds) Insect ultrastructure, vol I. Plenum Press, New York, London, pp 247–273

    Google Scholar 

  • Gnatzy W (1970) Struktur und Entwicklung des Integuments und der Oenocyten von Culex pipiens L (Dipt). Z Zellforsch 110:401–443

    Article  PubMed  CAS  Google Scholar 

  • Hepburn HR (1976) The insect integument. Elsevier, Amsterdam, pp 571

    Google Scholar 

  • Hori M, Riddiford LM (1981) Isolation of ommochromes and 3-hydroxykynurenine from the tobacco hornworm, Manduca sexta. Insect Biochem 11:507–513

    Article  CAS  Google Scholar 

  • Jungreis AM (1979) Physiology of moulting in insects. In: Treherne JE, Berridge MJ, Wiggles-worth VB (eds) Advances in insect physiology 14:109–183

    Google Scholar 

  • Ker RF (1978) The effects of diflubenzuron on the growth of insect cuticle. Pestic Sci 9:259–265

    Article  CAS  Google Scholar 

  • Lane NJ (1982) Insect intercellular junctions: their structure and development. In: King RC, Akai H (eds) Insect ultrastructure, vol I. Plenum Press, New York London, pp 402–430

    Google Scholar 

  • Lai-Fook J (1967) The structure of developing muscle insertions in insects. J Morphol 123:503–528

    Article  PubMed  CAS  Google Scholar 

  • Lai-Fook J (1968) The fine structure of wound repair in an insect (Rhodnius prolixus). J Morphol 124:37–78

    Article  PubMed  CAS  Google Scholar 

  • Lai-Fook J (1972) A comparison between the dermal glands in two insects Rhodnius prolixus (Hemiptera) and Calpodes ethlius (Lepidoptera). J Morphol 136:495–504

    Article  PubMed  CAS  Google Scholar 

  • Lai-Fook J (1973) The fine structure of Verson’s glands in molting larvae of Calpodes ethlius (Hesperiidae, Lepidoptera). Can J Zool 51:1201–1210

    Article  Google Scholar 

  • Lawrence PA (1973) The development of spatial patterns in the integument of insects. In: Counce SJ, Waddington CH (eds) Developmental systems — insects. Academic Press, London New York, pp 157–209

    Google Scholar 

  • Lawrence PA, Crick FHC, Munro M (1972) A gradient of positional information in an insect, Rhodnius. J Cell Sci 11:815–853

    PubMed  CAS  Google Scholar 

  • Locke M (1958) The co-ordination of growth in the tracheal system of insects. Q J Microsc Sci 99:373–391

    Google Scholar 

  • Locke M (1959) The cuticular pattern in an insect, Rhodnius prolixus stal. J Exp Biol 36:459–477

    Google Scholar 

  • Locke M (1966a) The structure and formation of the cuticulin layer in the epicuticle of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). J Morphol 118:461–494

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1966b) Cell interactions in the repair wounds in an insect (Rhodnius prolixus). J Insect Physiol 12:389–395

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1967) The development of patterns in the integument of insects. Adv Morphogen 6:33–88

    CAS  Google Scholar 

  • Locke M (1969a) The structure of an epidermal cell during the formation of the protein epicuticle and the uptake of molting fluid in an insect. J Morphol 127:7–40

    Article  Google Scholar 

  • Locke M (1969b) The ultrastructure of the oenocytes in the molt/intermolt cycle of an insect (Calpodes ethlius Stoll). Tissue Cell 1:103–154

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1969c) The localization of a peroxidase associated with hard cuticle formation in an insect, Calpodes ethlius Stoll, Lepidoptera, Hesperiidae. Tissue Cell 1:555–574

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1970) The molt/intermolt cycle in the epidermis and other tissues of an insect Calpodex ethlius (Lepidoptera, Hesperiidae). Tissue Cell 2:197–223

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1976) The role of plasma membrane plaques and Golgi complex vesicles in cuticle deposition during the molt/intermolt cycle. In: Hepburn HR (ed) The insect integument. Elsevier/North-Holland, Amsterdam, pp 237–258

    Google Scholar 

  • Locke M (1982) Envelopes at cell surfaces — a confused area of research of general importance. In: Mettrick DF, Desser SS (eds) Parasites-their world and ours. Proc 5th Int Congr Parasitol. Elsevier Biomed Press, Amsterdam, pp 73–88

    Google Scholar 

  • Locke M (1983) The structure and development of vacuoles in the fat body of insects. In: King RC, Akai H (eds) Insect ultrastructure, vol II. Plenum Press, New York

    Google Scholar 

  • Locke M (1984) A structural analysis of post-embryonic development, vol II, chap 2. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford

    Google Scholar 

  • Locke M, Huie P (1976) The beads in the Golgi complex/endoplasmic reticulum region. J Cell Biol 70:384–394

    Article  PubMed  CAS  Google Scholar 

  • Locke M, Huie P (1979) Apolysis and the turnover of plasma membrane plaques during cuticle formation in an insect. Tissue Cell 11:227–291

    Article  Google Scholar 

  • Locke M, Huie P (1980) The nucleolus during epidermal development in an insect. Tissue Cell 12:175–194

    Article  PubMed  CAS  Google Scholar 

  • Locke M, Huie P (1981a) Epidermal feet in insect morphogenesis. Nature 293:733–735

    Article  PubMed  CAS  Google Scholar 

  • Locke M, Huie P (1981b) Epidermal feet in pupal segment morphogenesis. Tissue Cell 13:787–803

    Article  PubMed  CAS  Google Scholar 

  • Locke M, Krishnan N (1971) Distribution of phenoloxidases and polyphenols during cuticle formation. Tissue Cell 3:103–126

    Article  PubMed  CAS  Google Scholar 

  • Locke M, Krishnan N (1973) The formation of the ecdysial droplets and the ecdysial membrane in an insect. Tissue Cell 5:441–450

    Article  PubMed  CAS  Google Scholar 

  • McDermid H, Locke M (1983) Tyrosine storage vacuoles in insect fat body. Tissue Cell 15:137–158

    Article  PubMed  CAS  Google Scholar 

  • Neville AC (1975) Biology of the arthropod cuticle. Springer, Berlin Heidelberg New York, 450 pp

    Google Scholar 

  • Noirot C, Noirot-Timothée C (1969) La cuticule proctodéale des insectes I Ultrastructure comparée. Z Zeilforsch 101:477–509

    Article  CAS  Google Scholar 

  • Noirot C, Noirot-Timothée C (1971) La cuticule proctodéale des insectes II Formation durant des mue. Z Zeilforsch 113:361–387

    Article  CAS  Google Scholar 

  • Noirot C, Noirot-Timothée C (1977) Fine structure of the rectum in termites (Isoptera): a comparative study. Tissue Cell 9(4):693–710

    Article  PubMed  CAS  Google Scholar 

  • Noirot C, Noirot-Timothée C (1982) The structure and development of the tracheal system. In: King RC, Akai H (eds) Insect ultrastructure, vol I. Plenum Press, New York London, pp 351–381

    Google Scholar 

  • Percy JE (1974) Ultrastructure of sex-pheromone gland cells and cuticle before and during release of pheromone in female eastern spruce budworm, Choristoneura fumiferana (Clem) (Lepidoptera, Tortricidae). Can J Zool 52:695–705

    Article  PubMed  CAS  Google Scholar 

  • Riddiford LM (1976) Juvenile hormone control of epidermal commitment in vivo and in vitro. In: Gilbert LI (ed) The juvenile hormones. Plenum Press, New York London, pp 198–219

    Chapter  Google Scholar 

  • Riddiford LM (1980) The hormonal control of morphogenesis of a Lepidopteran epidermal cell. In: Locke M, Smith DS (eds) Insect biology in the future “VBW80”. Academic Press, New York, pp 403–421

    Google Scholar 

  • Riddiford LM (1981) Hormonal control of epidermal cell development. Am Zool 21:751–762

    CAS  Google Scholar 

  • Romer F (1975) Morphologie und Ultrastruktur der larvalen Oenocyten von Tenebrio molitor L (Insecta, Coleoptera) bei Larve, Puppe und Imago. Z Morphol Oecol Tiere 80:1–40

    Article  Google Scholar 

  • Roseland CR, Riddiford LM (1980) Analysis of a cuticular spacing pattern after metamorphosis in vitro of larval integument. In: Kurstak E, Maramorosch K, Dubendorfer A (eds) Invertebrate systems in vitro. Elsevier/North Holland Amsterdam, pp 117–123

    Google Scholar 

  • Ryerse JS and Locke M (1978) Ecdysterone-mediated cuticle deposition and the control of growth in insect tracheae. J Insect Physiol 24:541–550

    Article  CAS  Google Scholar 

  • Sedlak BJ, Gilbert LI (1975) Hormonal control of insect epidermal cell activities: an ultrastructural analysis. Trans Am Microsc Soc 94(4): 480–500

    Article  PubMed  CAS  Google Scholar 

  • Sedlak BJ, Gilbert LI (1979) Correlations between epidermal cell structure and endogenous hormone titers during the fifth larval instar of the tobacco hornworm, Manduca sexta. Tissue Cell 11(4): 643–653

    Article  PubMed  CAS  Google Scholar 

  • Stumpf HF (1968) Further studies on gradient-dependent diversification in the pupal cuticle of Galleria mellorella. J Exp Biol 49:49–60

    Google Scholar 

  • Thurm U, Kuppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith DS (eds) Insect biology in the future “ VBW80”. Academic Press, New York, pp 735–764

    Google Scholar 

  • Truman JW, Taghert PH, Copenhaver PF, Tublitz NJ, Schwartz LM (1981) Eclosion hormone may control all ecdyses in insects. Nature 291:70–71

    Article  CAS  Google Scholar 

  • Wessing A, Eichelberg D (1973) Electronenmikroskopische Untersuchungen zur Struktur und Funktion der Rektalpapillen von Drosophila melanogaster. Z Zellforsch 136:415–432

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1937) Wound healing in an insect Rhodnius prolixus Hemiptera). J Exp Biol 14:364–381

    CAS  Google Scholar 

  • Wigglesworth VB (1940) Local and general factors in the development of “pattern” in Rhodnius prolixus (Hemiptera). J Exp Biol 17:180–200

    Google Scholar 

  • Wigglesworth VB (1954) Growth and regeneration in the tracheal system of an insect, Rhodnius prolixus (Hemiptera). Q J Microsc Sci 95:115–137

    Google Scholar 

  • Wigglesworth VB (1959) The role of the epidermal cells in the “migration” of tracheoles in Rhodnius prolixus (Hemiptera). J Exp Biol 36:161–640

    Google Scholar 

  • Wigglesworth VB (1977) Structural changes in the epidermal cells of Rhodnius during tracheole capture. J Cell Sci 26:161–174

    PubMed  CAS  Google Scholar 

  • Williams GJA, Caveney S (1980a) Changing muscle patterns in a segmental epidermal field. J Embryol Exp Morphol 58:13–33

    PubMed  CAS  Google Scholar 

  • Williams GJA, Caveney S (1980b) A gradient of morphogenetic information involved in muscle patterning. J Embryol Exp Morphol 58:35–61

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Locke, M. (1984). Epidermal Cells. In: Bereiter-Hahn, J., Matoltsy, A.G., Richards, K.S. (eds) Biology of the Integument. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51593-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51593-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51595-8

  • Online ISBN: 978-3-642-51593-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics