Advertisement

Abstract

Mollusc shells generally consist of an outer sclerotized protein layer called peri-ostracum and inner calcified layers. In addition, a hinge system is present in pelecypods which joins the two shells at their dorsal margins. In most proso-branchs, an organic or calcified operculum is present on the dorsal surface of the metapodium of the foot. Polyplacophorans (chitons) differ from the other molluscan classes in that the hard parts consist of eight shell plates covered by thin organic material, and spines covered by a cuticular substance.

Keywords

Organic Matrix Mytilus Edulis Shell Layer Shell Formation Prismatic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adegoke OS (1973) Mineralogy and biogeochemistry of calcareous operculi and shells of some gastropods. Malacologia 14:39–46Google Scholar
  2. Aller RC (1974) Préfabrication of shell ornamentation in the bivalve Laternula. Lethaia 7:43–56CrossRefGoogle Scholar
  3. Andersen SO (1967) Isolation of a new type of cross link from the hinge ligament protein of molluscs. Nature 215:1029–1030CrossRefGoogle Scholar
  4. Archambault-Geuezou J (1982) Microanalyse de teste de lamellibranche actuels. Mise en évidence de zonations chimiques de croissance. Malacologia 22:319–324Google Scholar
  5. Bändel K (1977) Die Herausbildung der Schraubensicht der Pteropoden. Biomineralization 9:73–85Google Scholar
  6. Beedham GE (1958) Observations on the mantle of the lamellibranchia. Q J Microsc Sci 99:181–197Google Scholar
  7. Bevelander G, Nakahara H (1967) An electron microscope study of the formation of the periostracum of Macrocallista maculate. Calcif Tissue Res 1:55–67PubMedCrossRefGoogle Scholar
  8. Bevelander G, Nakahara H (1969) An electron microscope study of the formation of the ligament of Mytilus edulis and Pinctada radiata. Calcif Tissue Res 4:101–112PubMedCrossRefGoogle Scholar
  9. Bevelander G, Nakahara H (1970) An electron microscope study of the formation and structure of the periostracum of a gastropod Littorina littorina. Calcif Tissue Res 5:1–12PubMedCrossRefGoogle Scholar
  10. Bevelander G, Nakahara H (1975) Structure and amino acid composition of pearls exposed to sea water for four hundred years. Earth Sci 29:87–91Google Scholar
  11. Bevelander G, Nakahara H (1980) Compartment and envelope formation in the process of biological mineralization. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in animals and plants. Tokai Univ Press, Tokyo, pp 19–27Google Scholar
  12. Blackwelder PL, Watabe N (1977) Studies on shell regeneration II. The fine structure of normal and regenerated shell of the freshwater snail Pomacea paludosa. Biomineralization 9:1–10Google Scholar
  13. Blanchard SC, Chasteen ND (1976) Electron paramagnetic resonance spectrum of a sea shell, Mytilus edulis. J Phys Chem 80:1362–1367CrossRefGoogle Scholar
  14. Bøggild OB (1930) The shell structure of the mollusks. K Dan Vidensk Selsk Skr Naturvidensk Math Afd 9 Raekke 2:231–326Google Scholar
  15. Boer HH, Witteveen J (1980) Ultrastructural localization of carbonic anhydrase in tissues involved in shell formation and ionic regulation in the pond snail Lymnaea stagnalis. Cell Tissue Res 209:383–390PubMedCrossRefGoogle Scholar
  16. Bonar DB (1978) Fine structure of muscle insertions on the larval shell and operculum of the nudibranch Phestilla sibogae (Mollusca: Gastropoda) before and during metamorphosis. Tissue Cell 10:143–152PubMedCrossRefGoogle Scholar
  17. Bubel A (1973a) An electron microscope study of periostracum formation in some marine bivalves. 1. The origin of the periostracum. Mar Biol 21:245–221CrossRefGoogle Scholar
  18. Bubel A (1973b) An electron microscope investigation into the distribution of polyphenols in the periostracum and cells of the inner face of the outer fold of Mytilus edulis. Mar Biol 23:3–10CrossRefGoogle Scholar
  19. Bubel A (1976) An electron microscope study of the formation of the periostracum in the freshwater bivalve, Anodonta cygnea. J Zool (London) 180:211–232CrossRefGoogle Scholar
  20. Carriker MR (1979) Ultrastructure of the mosaicostracal layer in the shell of the bivalve Mytilus edulis. Veliger 21:411–414Google Scholar
  21. Carriker MR, Palmer RE, Sick LV, Johnson CC (1980) Interactions of mineral elements in sea water and shell of oysters [Crassostrea virginica (Gmelin)] cultured in controlled and natural systems. J Exp Mar Biol Ecol 46:279–296CrossRefGoogle Scholar
  22. Carriker MR, Swann CP, Ewart JW (1982) An exploratory study with the proton microprobe of the ontogenetic distribution of 16 elements in the shell of living oysters (Crassostrea virginica). Mar Biol 69:235–246CrossRefGoogle Scholar
  23. Carter JG (1979) Comparative shell microstructure of the Mollusca, Brachiopoda and Bryozoa. SEM 11:439–446Google Scholar
  24. Carter JG (1980) Guide to bivalve shell microstructures. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 645–673Google Scholar
  25. Carter JG, Aller RC (1975) Calcification in the bivalve periostracum. Lethaia 8:315–320CrossRefGoogle Scholar
  26. Chan JFY, Saleuddin ASM (1974) Acid phosphatase in the mantle of shell-regenerating snail Helisoma duryi duryi. Calcif Tissue Res 15:213–320PubMedCrossRefGoogle Scholar
  27. Chave KE (1954) Aspects of the biogeochemistry of magnesium. 1. Calcareous marine organisms. J Geol 62:266–283CrossRefGoogle Scholar
  28. Clarke FW, Wheeler WC (1922) The inorganic constituents of marine invertebrates. US Geol Surv Prof Papers, 124Google Scholar
  29. Crenshaw MA (1972) The soluble matrix from Mercenaria mercenaria shell. Biomineralization 6:6–11Google Scholar
  30. Crenshaw MA (1980) Mechanisms of shell formation and dissolution. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 115–132Google Scholar
  31. Crenshaw MA (1982) Mechanisms of normal biological mineralization of calcium carbonates. In: Nancollas GH (ed) Biological mineralization and demineralization. Dahlem Konferenzen. Springer, Berlin Heidelberg New York, pp 243–257CrossRefGoogle Scholar
  32. Crenshaw MA, Ristedt H (1976) The histochemical localization of reactive groups in the septal nacre from Nautilus pompilus L. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. Univ South Carolina Press, Columbia, pp 335–367Google Scholar
  33. D’Attilio A, Radwin GE (1971) The intritacalx, an undescribed shell layer in mollusks. Veliger 13:344–347Google Scholar
  34. Davies TT (1972) The effect of environmental gradients in the Rappahannock River Estuary on the molluscan fauna. In: Nelson BW (ed) Environmental framework of coastal plan estuaries, Bd 133. Geol Soc Am Mem, pp 263–290Google Scholar
  35. Degens ET (1976) Molecular mechanisms on carbonate, phosphate and silica deposition in the living cell. Top Curr Chem 64:1–112PubMedCrossRefGoogle Scholar
  36. Degens ET, Spencer DW (1966) Data file on amino acid distribution in calcified and uncalcified tissues of shell-forming organisms. Tech Rep Woods Hole Oceanogr Inst Ref 66:27Google Scholar
  37. Degens ET, Spencer DW, Parker RH (1967) Paleobiochemistry of molluscan shell proteins. Comp Biochem Physiol 20:533–579Google Scholar
  38. Dodd JR (1967) Magnesium and strontium in calcareous skeletons: A review. J Paleontol 41:1313–1329Google Scholar
  39. Doscher CM (1980) Shell formation and growth in the intertidal gastropod, Littorina irrorata Say (Prosobranchia). Thesis, Univ of South Carolina, ColumbiaGoogle Scholar
  40. Eisma D, Mook WG, Das HA (1976) Shell characteristics, isotopic composition and trace element contents of some euryphaline molluscs as indicators of salinity. Paleogeogr Palaeo-climatol Palaeoecol 19:39–62CrossRefGoogle Scholar
  41. Erben HK (1972) Über die Bildung und das Wachstum von Perlmutt. Biomineralization 7:14–27Google Scholar
  42. Erben HK (1974) On the structure and growth of the nacreous tablets in gastropods. Biomineralization 7:14–27Google Scholar
  43. Erben HK, Krampitz G (1970) Ultrastruktur und Aminosäuren-Verhältnisse in den Schalen der rezenten Pleurotomarüdae (Gastropoda). Biomineralization 6:12–31Google Scholar
  44. Erben HK, Watabe N (1974) Crystal formation and growth in bivalve nacre. Nature 248:128–130CrossRefGoogle Scholar
  45. Erben HK, Flajs G, Siehl A (1969) Die frühontogenetische Entwicklung der Schalenstructur ectocohleater Cephalopoden. Paleontographica 132:1–54Google Scholar
  46. Estes EL III (1972) Diagenetic alteration of Mercenaria mercenaria as determined by laser microprobe analysis. Thesis, Univ North Carolina, Chapel HillGoogle Scholar
  47. Ferrel RE, Carville TE, Martinez JD (1973) Trace metals in oyster shells. Environ Lett 4:311–316CrossRefGoogle Scholar
  48. Flajs G (1972) Die Ultrastruktur des Schlosses der Bivalvia I. Biomineralization 6:49–65Google Scholar
  49. Florkin M (1966) Aspects moléculaires de l’adaptation et de la phylogénie. Mason, ParisGoogle Scholar
  50. Frémey E (1855) Recherches chimiques sur les os. Ann Chem Phys 43:96Google Scholar
  51. Fürst M, Lowenstam HA, Burnett DS (1976) Radiographic study of the distribution of boron in recent mollusc shells. Geochim Cosmochim Acta 40:1381–1386CrossRefGoogle Scholar
  52. Galtsoff PS (1964) The American oyster, Crassostrea virginica. US Gov Print Office, Washington DC (Fisheries Bull, vol 64)Google Scholar
  53. Ganagarajah M, Saleuddin ASM (1972) Electron histochemistry for the outer mantle epithelium in Helix during shell regeneration. Proc Malacol Soc (London) 40:71–77Google Scholar
  54. Goffinet G, Jeuniaux C (1979) Distribution et importance quantitative de la chitine dans les coquilles de mollusques. Cah Biol Mar 20:341–349Google Scholar
  55. Gordon J, Carriker MR (1980) Sclerotized protein in the shell matrix of a bivalve mollusc. Mar Biol 57:251–260CrossRefGoogle Scholar
  56. Gray JE (1825) Conchological observations, being an attempt to fix the study of conchology on a firm basis. Zool J (London) 1:204–223Google Scholar
  57. Grégoire C (1961a) Structure of the conchiolin cases of the prisms in Mytilus edulis Linné. J Biophys Biochem Cytol 9:395–400PubMedCrossRefGoogle Scholar
  58. Grégoire C (1961b) Sur 1a structure submicroscopique da 1a conchioline associée aux prismes de coquilles de mollusques. Bull Inst R Sci Nat Belg 37:1–34Google Scholar
  59. Grégoire C (1972) Structure of the molluscan shell. In: Florkin M, Scheer AT (eds) Chemical zoology, vol VII. Mollusca. Academic Press, London New York, pp 45–102Google Scholar
  60. Grégoire C, Duchateau G, Florkin M (1955) La trame protidique des nacres et des perles. Ann Inst Oceanogra 31:1–30Google Scholar
  61. Haas W (1972) Untersuchungen über die Mikro-und Ultrastruktur der Polyplacophorenschale. Biomineralization 5:1–52Google Scholar
  62. Haas W (1981) Evolution of calcareous hardparts in primitive molluscs. Malacologia 21:403–418Google Scholar
  63. Hallam A, Price NB (1968) Environmental and biochemical control of strontium in shells of Cardium edule. Geochim Cosmochim Acta 32:319–328CrossRefGoogle Scholar
  64. Hamilton GH (1969) The taxonomic significance and theoretical origin of surface pattern on a newly discovered bivalve shell layer, the mosaicostracum. Veliger 11:185–194Google Scholar
  65. Hare PE, Ableson PH (1965) Amino acid composition of some calcified proteins. Carnegie Inst Washington Yearb 64:223–231Google Scholar
  66. Harriss RC (1965) Trace element distribution in molluscan skeletal material. I. Magnesium, iron, manganese, and strontium. Bull Mar Sci 15:265–273Google Scholar
  67. Hillman RE, Shuster CN Jr (1960) Observations on the mantle of the northern quahog Mercenaria mercenaria. Proc Natl Shellfish Assoc 51:15–22Google Scholar
  68. Hirano M, Onuma N, Masuda F (1979) Simultaneous determination of trace elements in shells by inductively coupled plasma-optical emission spectrometry. Bunseki Kagaku 28:313–318CrossRefGoogle Scholar
  69. Hotta S (1969) Infrared spectra and conformation protein constituting the nacreous layer of molluscan shell. Chikyukagaku 23:133–140Google Scholar
  70. Hotta S (1981) Organic substance of gastropod opercula. In: Habe T, Omori M (eds) Study of molluscan paleobiology. Professor Masae Omori Memorial Volume Publication Committee. Niigata Univ, Niigata, pp 125–130Google Scholar
  71. Hunt S (1970) Invertebrate structure proteins. Characterization of the operculum of the gastropod mollusc Buccinum undatum. Biochem Biophys Acta 207:347–360PubMedCrossRefGoogle Scholar
  72. Hyman LH (1967) Mollusca. The invertebrates, vol V. McGraw-Hill, New YorkGoogle Scholar
  73. Iwata K (1975) Ultrastructure of the conchiolin matrices in molluscan nacreous layer. J Fac Sci Hokkaido Univ Ser 4 17:173–229Google Scholar
  74. Iwata K (1978) A study on calcification of the protoconch of Haliotis discus hannai INO, (Archaeogastropoda). Chikyukagaku 32:51–57Google Scholar
  75. Iwata K (1980) Mineralization and architecture of the larval shell of Halitois discus hannai INO, (Archaeogastropoda). J Fac Sci Hokkaido Univ Ser 4(19): 305–320Google Scholar
  76. Iwata K, Erben HK (1981) SEM study of the shell of Edenetellina (Tammanovalva) Umax (Kawaguchi & Baba) a bivalved gastropod. Palaeontographica 174:1–9Google Scholar
  77. Jones GM, Saleuddin ASM (1978) Cellular mechanisms of periostracum formation in Physa spp. (Mollusca: Pulmonata). Can J Zool 56:2299–2311CrossRefGoogle Scholar
  78. Jones RG, Davis W (1982) Calcium-containing lysosomes in the outer mantle epithelial cells of Amblema, a fresh-water mollusc. Anat Rec 203:337–343PubMedCrossRefGoogle Scholar
  79. Kahler GA, Sass RL, Fisher FM (1976) The chemical composition and mechanical properties of the hinge ligament in bivalve molluscs. Biol Bull 151:161–181PubMedCrossRefGoogle Scholar
  80. Kapur SP, Gibson MA (1968) Histochemical studies of dopa oxidase and peroxidase in the mantle-edge of the freshwater gastropod, Helisoma duryi eudiscus (Pilsbry). Can J Zool 46:165–167CrossRefGoogle Scholar
  81. Kasai H, Ohta N (1981) Relationship between organic matrices and shell structures in recent bivalves. In: Habe T, Omori M (eds) Study of molluscan paleobiology. Professor Masae Omori Memorial Volume Publication Committee, Niigata Univ, Niigata, pp 101–106Google Scholar
  82. Kawaguchi S, Yamasu T (1961) The shell structure of the bivalved gastropod with a note on the mantle. Biol J Okayama Univ 7:1–16Google Scholar
  83. Kay EA (1968) A review of the bivalved gastropods and a discussion of evolution within the Sacoglossa. Symp Zool Soc (London) 22:109–134Google Scholar
  84. Kelly RE, Rice RT (1967) Abductin: a rubber-like protein from the internal triangular hinge ligament of pecten. Science 155:208–210PubMedCrossRefGoogle Scholar
  85. Kennedy JM, Taylor JD, Hall A (1969) Environmental and biological controls on bivalve shell mineralogy. Biol Rev 44:499–530PubMedCrossRefGoogle Scholar
  86. Kessel E (1941) Über Bau und Bildung des Prosobranchier-Deckels. Z Morphol Oecol Tiere 38:197–250CrossRefGoogle Scholar
  87. Kitano Y, Kanamori N, Tokuyama A (1969) Effects of organic matter on solubilities and crystal form of carbonates. Am Zool 9:681–688Google Scholar
  88. Kitano Y, Kanamori N, Nishioka S (1976) Influence of chemical species on the crystal type of calcium carbonate. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. Univ South Carolina Press, Columbia, pp 191–202Google Scholar
  89. Kniprath E (1971) Cytochemische Lokalisation von Kalzium in Mantelepithel von Lymnaea stagnalis (Gastropoda). Histochemistry 25:45–51PubMedCrossRefGoogle Scholar
  90. Kniprath E (1972) Formation and structure of the periostracum in Lymnaea stagnalis. Calif Tissue Res 9:260–271CrossRefGoogle Scholar
  91. Kobayashi I (1964) Outline of shell structure of bivalves. Chikyukagaku 73:1–12Google Scholar
  92. Kobayashi I (1969) Internal microstructure of the shell of bivalve molluscs. Am Zool 9:663–672Google Scholar
  93. Kobayashi I (1971) Internal shell microstructure of recent bivalvian molluscs. Sci Rep Niigata Univ Ser E 2:27–50Google Scholar
  94. Kobayashi I (1980) Various patterns of biomineralization and its phylogenetic significance in bivalve molluscs. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in animals and plants. Tokai Univ Press, Tokyo, pp 145–155Google Scholar
  95. Kobayashi I (1981) Internal shell structure and its paleontological significance in molluscs-especially on Bivalvia. In: Habe T, Omori M (eds) Study of molluscan paleobiology. Professor Masae Omori Memorial Volume Publication Committee. Niigata Univ Niigata, pp 47–62Google Scholar
  96. Kobayashi S (1964a) Studies in shell formation X. A study of the proteins of the extrapallial fluid in some molluscan species. Biol Bull 126:414–422CrossRefGoogle Scholar
  97. Kobayashi S (1964b) Calcification in fish and shellfish II. A paper electrophoretic study on the acid mucopolysaccharides and PAS-positive materials of the extrapallial fluid in some molluscan species. Bull Jpn Soc Sci Fish 30:893–907CrossRefGoogle Scholar
  98. Korringa P (1951) On the nature and function of chalky deposits in the shell of Ostrea edulis Linn. Proc Calif Acad Sci 27:133–158Google Scholar
  99. Krampitz G (1980) Calcium-binding proteins in mollusc shells. Haliotis 10:82Google Scholar
  100. Krampitz GP (1982) Structure of the organic matrix in mollusc shells and avian eggshells. In: Nancollas GH (ed) Biological mineralization and demineralization. Dahlem Konferenzen, Springer, Berlin Heidelberg New York, pp 219–232CrossRefGoogle Scholar
  101. Krampitz G, Witt W (1979) Biochemical aspects of biomineralization. Top Curr Chem 78:57–144PubMedCrossRefGoogle Scholar
  102. Krampitz G, Engels J, Cazaux C (1976) Biochemical studies on water-soluble proteins and related components of gastropod shells. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrats and plants. Univ of South Carolina Press, Columbia, pp 155–173Google Scholar
  103. Krampitz G, Drolshagen H, Häusle J, Hof-Irmscher K (1983) Organic matrices of mollusc shells. In: Westbroek P, Jong EW de (eds) Biomineralization and biological metal accumulation. Reidel, Dordrecht, pp 231–247CrossRefGoogle Scholar
  104. Likins RC, Berry EG, Posner AS (1963) Comparative fixation of calcium and strontium by snail shell. Ann NY Acad Sci 109:269–277PubMedCrossRefGoogle Scholar
  105. Lorens RB, Bender ML (1976) The physiological exclusion of Mg++ from Mytilus edulis calcite. Geol Soc Am Abstr Proc 8:986–987Google Scholar
  106. Lowenstam HA (1963) Biologic problems relating to the compositon and diagenesis of sediments. In: Donnelly TW (ed) The earth sciences. Rice Univ, Houston, pp 137–195Google Scholar
  107. MacClintock C (1967) Shell structure of patelloid and bellerophontoid gastropods (Mollusca). Peabody Mus Nat Hist Yale Univ Bull 22, pp 140Google Scholar
  108. Mano K (1970) Study on the microscopic structure of hinge teeth of Taxondonta, Lamellibran-chia — a consideration of phylogenetic relation in Taxodonta. Chikyukagaku 24:129–138Google Scholar
  109. Mano K (1980) Scanning electron microscopy of the calcified ligament of some molluscs. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in animals and plants. Tokai Univ Press, Tokyo, pp 99–106Google Scholar
  110. Mano K (1981) Structure and function of hinge system of Bivalvia. In: Habe T, Omori M (eds) Study of molluscan paleobiology. Professor Masae Omori Memorial Volume Publication Committee. Niigata Univ, Niigata, pp 79–94Google Scholar
  111. Mano K, Watabe N (1979) Scanning electron microscope observation on the calcified layers of the ligament of Mercenaria mercenaria (L) and Brachidontes exustus (L) (Pelecypoda). Biomineralization 10:25–32Google Scholar
  112. Marsh ME, Sass RL (1980) Aragonite twinning in the molluscan bivalve hinge ligament. Science 208:1262–1263PubMedCrossRefGoogle Scholar
  113. Marsh M, Hopkins G, Fisher F, Saas R (1976) Structure of the molluscan bivalve hinge ligament, a unique calcified elastic tissue. J Ultrastruct Res 54:445–450PubMedCrossRefGoogle Scholar
  114. Marsh M, Hamilton G, Saas R (1978) The crystal sheaths from bivalve hinge ligaments. Calcif Tissue Res 25:45–51PubMedCrossRefGoogle Scholar
  115. Mason AZ, Nott JA (1981) The role of intracellular biomineralized granules in the regulation and detoxification of metals in gastropods with special reference to the marine prosobranch Littorina littorinea. Aquat Toxicol 1:239–256CrossRefGoogle Scholar
  116. Masuda F (1981) Chemical composition in marine carbonates as an indicator of paleoenviron-ment. Rep Grant-In-Aid Sci Res (C) Proj 454262: 1–46Google Scholar
  117. Masuda F, Hirano M (1980) Chemical composition of some modern marine pelecypod shells. Sci Rep Inst Geosci Univ Tsukuba Sec B 1:163–177Google Scholar
  118. Matheja J, Degens ET (1968) Molecular Entwicklung mineralisationsfähiger organischer Matrizen. Neues Jahrb Geol Palaontol Monatsh 4:215Google Scholar
  119. Meenakshi VR, Hare PE, Watabe N, Wilbur KM (1969) The chemical composition of the periostracum of the molluscan shell. Comp Biochem Physiol 29:611–620CrossRefGoogle Scholar
  120. Meenakshi VR, Hare PE, Wilbur KM (1971) Amino acids of the organic matrix of neogastro-pod shells. Comp Biochem Physiol [B] 40:1037–1043Google Scholar
  121. Meenakshi VR, Martin AW, Wilbur KM (1974) Shell repair in Nautilus macromphalus. Mar Biol 27:27–35CrossRefGoogle Scholar
  122. Milliman JD (1974) Marine carbonates. Springer, Berlin Heidelberg New York, pp 313Google Scholar
  123. Misogianes MJ, Chasteen ND (1979) Extrapallial fluid. A chemical and spectral characterization of the extrapallial fluid of Mytilus edulis. Anal Biochem 100:324–334PubMedCrossRefGoogle Scholar
  124. Moberly R Jr (1968) Composition of magnesium calcites of algae and pelecypods by electron microprobe analysis. Sedimentology 11:61–82CrossRefGoogle Scholar
  125. Müller G (1978) Strontium uptake in shell aragonite from a freshwater gastropod in tank experiments and in a natural environment (Lake Constance). Naturwissenschaften 65:434CrossRefGoogle Scholar
  126. Mutvei H (1964) On the shells of Nautilus and Spirula with notes on the shell secretion in non-cephalopod molluscs. Ark Zool 16:221–278Google Scholar
  127. Mutvei H (1978) Ultrastructural characteristics of the nacre in some gastropods. Zool Scr 7:287–296CrossRefGoogle Scholar
  128. Mutvei H (1979) On the internal structure of the nacreous tablets in molluscan shells. SEM 11:457–462Google Scholar
  129. Mutvei H (1980) The nacreous layer in molluscan shells. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in the animals and plants. Tokai Univ Press, Tokyo, pp 49–56Google Scholar
  130. Nakahara H (1979) An electron microscope study of the growing surface of nacre in two gastropod species, Turbo cornutus and Tegula pfeifferi. Venus 38:205–211Google Scholar
  131. Nakahara H (1981) The formation and fine structure of the organic phase of the nacreous layer in mollusc shell. In: Habe T, Omori M (eds) Study of molluscan paleobiology. Professor Masae Omori Memorial Volume Publication Committee. Niigata Univ, Niigata, pp 21–27Google Scholar
  132. Nakahara H (1983) Calcification of gastropod nacre. In: Westbrock P, Jong EW de (eds) Biomineralization and biological metal accumulation. Reidel, Dordrecht, pp 225–230CrossRefGoogle Scholar
  133. Nakahara H, Bevelander G (1970) An electron microscope study of the muscle attachment in the mollusc Pinctada radiata. Tex Rep Biol Med 28:279–286PubMedGoogle Scholar
  134. Nakahara H, Bevelander G (1971) The formation and growth of the prismatic layer of Pinctada radiata. Calcif Tissue Res 7:31–45PubMedCrossRefGoogle Scholar
  135. Nakahara H, Kakei M, Bevelander G (1980) Fine structure and amino acid composition of the organic “envelope” in the prismatic layer of some bivalve shells. Venus 39:167–177Google Scholar
  136. Nakahara H, Bevelander G, Kakei M (1982) Electron microscopic and amino acid studies on the outer and inner shell layers of Haliotis rufescens. Venus 41:33–46Google Scholar
  137. Neff JM (1972a) Ultrastructural studies of periostracum formation in the hard shelled clam Mercenaria mercenaria (L.). Tissue Cell 4:311–326PubMedCrossRefGoogle Scholar
  138. Neff JM (1972b) Ultrastructure of the outer epithelium of the mantle in the clam Mercenaria mercenaria in relation to calcification of the shell. Tissue Cell 4:591–600PubMedCrossRefGoogle Scholar
  139. Oberling JJ (1964) Observations on some structural features of the pelecypod shell. Mitt Natur-forsch Ges Bern 20:1–63Google Scholar
  140. Omori M, Kobayashi I, Shibata M, Mano K, Kamiya H (1976) On some problems concerning calcification and fossilization of taxodontial bivalves. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. Univ South Carolina Press, Columbia, pp 403–426Google Scholar
  141. Onuma N, Masuda F, Hirano M, Wada K (1979) Crystal structure control on trace element partition in molluscan shell formation. Geochem J 13:187–189CrossRefGoogle Scholar
  142. Owen G, Trueman E, Yonge CM (1953) The ligament in the Lamellibranchia. Nature 171:73–75PubMedCrossRefGoogle Scholar
  143. Peters W (1972) Occurrence of chitin in mollusca. Comp Biochem Physiol [B] 41:541–550Google Scholar
  144. Petit H, Davis WL, Jones RG, Hagler HK (1980) Morphological studies on the calcification process in the fresh-water mussel Amblema. Tissue Cell 12:13–28PubMedCrossRefGoogle Scholar
  145. Pietrzak JE, Bates JM, Scott RM (1973) Constituents of Unionid extrapallial fluid. I. Electro-phoretic and immunological studies of protein components. Biol Bull 144:391–399CrossRefGoogle Scholar
  146. Pilkey OH, Goodell HG (1963) Trace elements in recent mollusk shells. Limnol Oceanogr 8:137–148CrossRefGoogle Scholar
  147. Poulicek M (1982) La matrice organique des opercules calcifiés. Malacologia 22:235–239Google Scholar
  148. Poulicek M, Jeuniaux C (1981) La matrice organique de la coquille et position phylétique de Neopilina galatheae (Mollusques, Monoplacophores). Ann Soc R Zool Belg 111:143–150Google Scholar
  149. Poulicek M, Voss-Foucart MF (1980) Variations saisonnières de la composition chimique de la coquille d’Agriolimax reticulatus (Müller 1774) (Gastropode, Limacidae). Arch Zool Exp Gen 121:77–86Google Scholar
  150. Prezant RS (1979) Shell spicules of the bivalve Lyonsia hyalina. Nautilus 93:93–95Google Scholar
  151. Prezant RS (1981) The arenophilic radial mantle glands of the Lyonsiidae (Bivalvia: Anomalo-desmata) with notes on Lyonsiid evolution. Malacologia 20:267–289Google Scholar
  152. Ravindranath MH, Ravindranath MHR (1974) The chemical nature of the shell of molluscs: I. Prismatic and nacreous layers of a bivalve Lamellidans marginalis (Unionidae). Acta Histochem 48:26–41PubMedGoogle Scholar
  153. Richardson CA, Runham NW, Crisp DJ (1981) A histological and ultrastructural study of the cells of the mantle edge of a marine bivalve, Cerastoderma edule. Tissue Cell 13:715–730PubMedCrossRefGoogle Scholar
  154. Roinel N, Morel F, Istin M (1973) Etudes granulés calcifiés du manteau des lamellibranches á l’aide de la microsonde électronique. Calcif Tissue Res 11:163–170CrossRefGoogle Scholar
  155. Rosenberg GD (1980) An ontogenetic approach to the environmental significance of bivalve shell chemistry. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 133–168Google Scholar
  156. Rucker JB, Valentine JW (1961) Salinity response of trace element concentration in Crassostrea virginica. Nature 190:1099–1100CrossRefGoogle Scholar
  157. Russell RGG, Mond A, Bonjour JP, Fleish H (1972) Relation between alkaline phosphatase and Ca2+ ATPase in calcium transport. Nature New Biol 240:126–127PubMedCrossRefGoogle Scholar
  158. Saleuddin ASM (1974) An electron microscopic study of the formation and structure of perios-tracum in Astarte (Bivalvia). Can J Zool 52:1463–1471CrossRefGoogle Scholar
  159. Saleuddin ASM (1975) An electron microscope study on the formation of the periostracum in Helisoma (Mollusca). Calcif Tissue Res 18:297–310PubMedCrossRefGoogle Scholar
  160. Saleuddin ASM (1976) Ultrastructural studies on the formation of the periostracum in Helix aspersa (Mollusca). Calcif Tissue Res 22:49–65PubMedCrossRefGoogle Scholar
  161. Saleuddin ASM (1980) Shell formation in molluscs with special reference to periostracum formation and shell regeneration. In: Spoel S van, Bruggen AC van, Lever J (eds) Pathways in malacology. Schellema and Holkema, Utrecht, pp 47–81Google Scholar
  162. Samata T (1981) Biochemical study on the organic materials in the shells of Ostreidae and Glycymeridae — Behavior of the water-soluble organic matrix in the course of calcification. In: Habe T, Omori M (eds) Study of molluscan paleobiology. Professor Masae Omori Memorial Volume Publication Committee. Niigata Univ, Niigata, pp 107–123Google Scholar
  163. Samata T, Krampitz G (1982) Ca2+-Binding polypeptides in oyster shells. Malacologia 22:225–233Google Scholar
  164. Samata T, Sanguansri P, Cazaux C, Hamm M, Engels J, Krampitz G (1980) Biochemical studies on components of mollusc shells. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in the animals and plants. Tokai Univ Press, Tokyo, pp 37–47Google Scholar
  165. Schmidt WJ (1923) Bau und Bildung der Perlmuttermasse. Zool Jahrb Anat Abt (Jena) 45:1–148Google Scholar
  166. Simkiss K (1976) Cellular aspects of calcification. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. Univ South Carolina Press, Columbia, pp 1–31Google Scholar
  167. Simkiss K (1980) Detoxification, calcification and the intercellular storage of ions. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in the animals and plants. Tokai Univ Press, Tokyo, pp 13–18Google Scholar
  168. Stenzel HB (1962) Aragonite in the resilium of oysters. Science 136:1121–1122PubMedCrossRefGoogle Scholar
  169. Sturesson U (1976) Lead enrichment in shells of Mytilus edulis. Ambio 5:253–256Google Scholar
  170. Sturesson U (1978) Cadmium enrichment in shells of Mytilus edulis. Ambio 7:122–125Google Scholar
  171. Suzuki S, Uozumi S (1981) Organic components of prismatic layers in molluscan shells. J Fac Sci Hokkaido Univ Ser 4(20): 7–20Google Scholar
  172. Tanaka S, Hatano H (1955) Biochemical studies on the pearl oyster, Pinctada matkensii. IV. On the uptake of radioactive calcium by pearl oyster and its deposition on the pearl and shell. J Chem Soc Jpn 76:602–605Google Scholar
  173. Tanaka S, Hatano H, Itasaka O (1960) Biochemical studies on pearl. IX Amino acid composition of conchiolin in pearl and shell. Bull Chem Soc Jpn 33:543–545CrossRefGoogle Scholar
  174. Taylor JD (1973) The structural evolution of the bivalve shell. Palaeontology 16:519–534Google Scholar
  175. Taylor JD, Kennedy JM, Hall A (1969) The shell structure and mineralogy of the Bivalvia-Introduction, Nuclacea-Trigonacea. Bull Br Mus Nat Hist [Suppl] 3:1–125Google Scholar
  176. Timmermans LPM (1969) Studies on shell formation in molluscs. Neth J Zool 19:417–523Google Scholar
  177. Togo Y (1981) The shell structure of the fresh-water snail Cipangopaludina japonica. Geol Mag 87:519–526Google Scholar
  178. Tompa AS, Watabe N (1976) Ultrastructural investigation of the mechanism of muscle attachment to the gastropod shell. J Morphol 149:339–352PubMedCrossRefGoogle Scholar
  179. Travis DF (1970) The comparative ultrastructure and organization of five calcified tissues. In: Schraer H (ed) Biological calcification: Cellular and molecular aspects. Appleton Century Crofts, New York, pp 203–311CrossRefGoogle Scholar
  180. Trueman ER (1949) The ligament of Tellina tenuis. Proc Zool Soc (London) 119:719–742Google Scholar
  181. Trueman ER (1950) Observations on the ligament of Mytilus edulis. Q J Microsc Sci 91: 225–235Google Scholar
  182. Trueman ER (1953) The ligament of Pecten. Q J Microsc Sci 94:193–202Google Scholar
  183. Trueman ER (1969) Ligament. In: Moore RC (ed) Treaties on invertebrate paleontology, part N, vol VI. Mollusca Bivalvia, Geol Soc Am Inc Univ Kansas, pp 58–64Google Scholar
  184. Tsujii T (1959) The distribution of inorganic constituents in molluscan mantles. Annot Zool Jpn 32:200–208Google Scholar
  185. Tsujii T (1976) An electron microscopic study of the mantle epithelial cells of Anodonta sp. during shell regeneration. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. Univ South Carolina Press, Columbia, pp 339–353Google Scholar
  186. Tsujii T, Sharp DG, Wilbur KM (1958) Studies on shell formation VII. The submicroscopic structure of the shell of the oyster Crassostrea virginica. J Biophys Biochem Cytol 4:275–280PubMedCrossRefGoogle Scholar
  187. Uozumi S, Suzuki S (1981) The evolution of shell structures in the bivalvia. In: Habe T, Omori M (eds) Studies of molluscan paleobiology. Professor Omori Memorial Volume Publication Committee. Niigata Univ, Niigata, pp 63–77Google Scholar
  188. Uozumi S, Iwata K, Togo Y (1972) The ultrastructure of the mineral in and the construction of the crossed-lamellar layer in molluscan shell. J Fac Sci Hokkaido Univ 15:447–478Google Scholar
  189. Vinogradov AP (1953) The elementary chemical composition of marine organisms. Mem Sears Found Mar Res II. Yale Univ PressGoogle Scholar
  190. Voss-Foucart MF (1968) Essais de solubilisation et de fractionnement d’une conchioline (nacre murale de Nautilus pompilius, mollusque céphalopode). Comp Biochem Physiol 26:877–886CrossRefGoogle Scholar
  191. Vovelle J (1969a) Elaboration de la matière operculaire chez Tricolia pullus (L), Gastropoda prosobranchia. Malacologia 9:293–294Google Scholar
  192. Vovelle J (1969b) Demonstration: Complexity of the opercular materials in Astralium rugosum (Linné) (Gastropoda, Prosobranchia, Turbinidae). Proc Malacol Soc 38:557Google Scholar
  193. Vovelle J (1973) Transfert du calcium á travers l’epithelium du repli operculaire chez Astrea rugosa L. (Turbinidae). Malacologia 14:47–51Google Scholar
  194. Vovelle J, Grasset M (1979) Approche histophysiologique et cytologique du rôle des cellules á spherules calciques du repli operculaire chez Pomatias elegans (Müller), Gastropodes, prosobranches. Malacologia 18:557–560Google Scholar
  195. Vovelle J, Grasset M (1982) Etude cytologique et histochemique comparée de la formation de l’opercule corné ches les prosobranches. Malacologia 22:257–263Google Scholar
  196. Vovelle J, Grasset M, Meunier F (1977) Elaboration de l’opercule calcifié chez Nerita plicata Linnaeus et Pomatias elegans (Müller), Gastropodes Prosobranches. Malacologia 16:279–283Google Scholar
  197. Wada K (1961) Crystal growth of molluscan shells. Bull Natl Pearl Res Lab 7:703–828Google Scholar
  198. Wada K (1964) Studies on the mineralization of calcified tissue in molluscs VII. Histological and histochemical studies of organic matrices in shells. Bull Natl Pearl Res Lab 9:1078–1086Google Scholar
  199. Wada K (1968) Electron microscopic observations of the formation of the periostracum of Pinctadafucata. Bull Natl Pearl Res Lab 13:1540–1560Google Scholar
  200. Wada K (1980) Initiation of mineralization in bivalve molluscs. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in animals and plants. Tokai Univ Press, Tokyo, pp 79–92Google Scholar
  201. Wada K, Fujinuki T (1974) Physiological regulation of shell formation in molluscs. I. Chemical composition of extrapallial fluid. Bull Natl Pearl Res Lab 18:2085–2110Google Scholar
  202. Wada K, Fujinuki T (1976) Biomineralization in bivalve molluscs with emphasis on the chemical composition of the extrapallial fluid. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. Univ South Carolina Press, Columbia, pp 175–190Google Scholar
  203. Wada K, Suga S (1976) The distribution of some elements in the shell of freshwater and marine bivalves by electron microprobe analysis. Bull Natl Pearl Res Lab 20:2219–2240Google Scholar
  204. Waite JH (1977) Evidence for the mode of sclerotization in a molluscan periostracum. Comp Biochem Physiol [B] 58:157–162Google Scholar
  205. Waite JH, Andersen SO (1978) 3,4-dihydroxyphenylalanine in an insoluble shell protein of Mytilus edulis. Biochem Biophys Acta 541:107–114CrossRefGoogle Scholar
  206. Waite JH, Andersen SO (1980) 3,4-dihydroxyphenylalanine (DOPA) and sclerotization of periostracum in Mytilus edulis L. Biol Bull 158:164–173CrossRefGoogle Scholar
  207. Waite JH, Wilbur KM (1976) Phenoloxidase in the periostracum of the marine bivalve Modiolus demissus Dillwyn. J Exp Zool 195:359–368CrossRefGoogle Scholar
  208. Waite JH, Saleuddin ASM, Andersen SO (1979) Periostracin-A soluble precursor of sclerotized periostracum in Mytilus edulis L. J Comp Physiol 130:301–307Google Scholar
  209. Watabe N (1954) Electron microscopic observations of the aragonite crystals on the surface of cultured pearls I. Rep Fac Fish Pref Univ Mie 1:440–454Google Scholar
  210. Watabe N (1965) Studies on shell formation XI. Crystal-matrix relationships in the inner layer of mollusk shells. J Ultrastruct Res 12:351–370PubMedCrossRefGoogle Scholar
  211. Watabe N (1974) Crystal growth of calcium carbonate in biological systems. J Cryst Growth 24/25:116–122CrossRefGoogle Scholar
  212. Watabe N (1981a) Some problems on the structure and formation of calcium carbonate crystals and their aggregates in the invertebrates. In: Habe T, Omori M (eds) Study of molluscan paleobiology. Professor Masae Omori Memorial Volume Publication Committee, Niigata Univ, Niigata, pp 34–46Google Scholar
  213. Watabe N (1981b) Crystal growth of calcium carbonate in the invertebrates. Prog Cryst Growth Charact 4:99–147CrossRefGoogle Scholar
  214. Watabe N (1983) Shell repair In: Saleuddin ASM, Wilbur KM (eds) The mollusca, vol IV. Physiology. Academic Press, London New York, pp. 289–316Google Scholar
  215. Watabe N, Blackwelder PL (1976) Studies on shell regeneration in mollusc III. Effects of inorganic ions on shell mineralogy; ultrastructural changes of mantle epithelium. Am Zool 16:249Google Scholar
  216. Watabe N, Blackwelder PL (1980) Ultrastructure and calcium localization in the mantle epithelium of the freshwater gastropod Pomacea paludosa during shell regeneration. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in the animals and plants. Tokai Univ Press, Tokyo, pp 131–144Google Scholar
  217. Watabe N, Dunkelberger DG (1979) Ultrastructural studies on calcification in various organisms. SEM 11:403–416Google Scholar
  218. Watabe N, Wada K (1956) On the shell structure of the Japanese pearl oyster, Pinctada martensii. I. Prismatic layer. Rep Fac Fish Pref Univ Mie 2:227–232Google Scholar
  219. Watabe N, Wilbur KM (1960) Influence of organic matrix on crystal type in molluscs. Nature 188:334CrossRefGoogle Scholar
  220. Watabe N, Sharp DG, Wilbur KM (1958) Studies on shell formation. VIII. Electron microscopy of crystal growth of the nacreous layer of the oyster Crassostrea virginica. J Biophys Biochem Cytol 4:281–286PubMedCrossRefGoogle Scholar
  221. Watabe N, Meenakshi VR, Blackwelder PL, Kurtz EM, Dunkelberger DG (1976) Calcareous spherules in the gastropod. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. Univ South Carolina Press, Columbia, pp 283–308Google Scholar
  222. Weiner S (1979) Aspartic acid rich proteins: Major component of the soluble organic matrix of mollusc shells. Calcif Tissue Int 29:163–167PubMedCrossRefGoogle Scholar
  223. Weiner S, Hood L (1975) Soluble protein of the organic matrix of mollusc shells: A potential template for shell formation. Science 190:987–898PubMedCrossRefGoogle Scholar
  224. Weiner S, Traub W (1980) X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett 111:311–316CrossRefGoogle Scholar
  225. Weiner S, Traub W (1981) Organic-matrix-mineral relationship in mollusk shell nacreous layers. In: Balaban M, Sussman JL, Traub W, Yonath A (eds) Structural aspects of recognition and assembly in biological macromolecules. Balaban I SS, Rehvot Philadelphia, pp 467–482Google Scholar
  226. Weiner S, Traub W, Lowenstam HA (1983) Organic matrix in calcified skeletons. In: West-broek P, Jong EW de (eds) Biomineralization and biological metal accumulation. Reidel, Dordrecht, pp 205–224CrossRefGoogle Scholar
  227. Wheeler AP (1975) Oyster mantle carbonic anhydrase: Evidence for plasma membrane-bound activity and for a role in bicarbonate transport. Thesis, Duke Univ, Durham NCGoogle Scholar
  228. White LK, Szabo A, Carkner P, Chasteen ND (1977) An electron paramagnetic study of Mnll in the aragonite lattice of a clam shell, Mya arenaria. J Phys Chem 81:1420–1424CrossRefGoogle Scholar
  229. Wilbur KM (1960) Shell structure and mineralization in molluscs. In: Sognnaes RF (eds) Calcification in biological systems. Am Assoc Adv Sci Pulb 64, Washington DC, pp 15–40Google Scholar
  230. Wilbur KM (1964) Shell formation and regeneration. In: Wilbur KM, Yonge CM (eds) Physiology of mollusca, vol I. Academic Press, London New York, pp 243–282Google Scholar
  231. Wilbur KM (1972) Shell formation in mollusks. In: Florkin M, Scheer BT (eds) Chemical Zoology, vol VII. Academic Press, London New York, pp 103–145Google Scholar
  232. Wilbur KM (1973) Mineral regeneration in echinoderms and molluscs. Ciba Found Symp II (New Ser): 7–33Google Scholar
  233. Wilbur KM (1976) Recent studies of invertebrate mineralization. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. Univ South Carolina Press, Columbia, pp 79–108Google Scholar
  234. Wilbur KM (1980) Cells, crystals, and skeletons. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in the anaimals and plants. Tokai Univ Press, Tokyo, pp 3–11Google Scholar
  235. Wilbur KM, Saleuddin ASM (1983) Shell formation. In: Saleuddin ASM, Wilbur KM (eds) The mollusca, vol IV. Physiology. Academic Press, London New York, pp. 235-287Google Scholar
  236. Wilbur KM, Simkiss K (1968) Calcified shells. In: Florkin M, Stotz EH (eds) Comprehensive Biochemistry Elsevier, Amsterdam New York, pp 229–295Google Scholar
  237. Wilbur KM, Simkiss K (1979) Carbonate turnover and deposition by metazoa. In: Swaine DJ, Trudinger PA (eds) Biochemical cycling of mineral forming elements. Elsevier, Amsterdam New York, pp 69–106CrossRefGoogle Scholar
  238. Wilbur KM, Watabe N (1963) Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi. Ann NY Acad Sci 109:82–112PubMedCrossRefGoogle Scholar
  239. Wilbur KM, Watabe N (1967) Mechanisms of calcium carbonate deposition in coccolithophor-ids and mollusca. Stud Trop Oceanogr Miami 5:133–154Google Scholar
  240. Wise SW Jr (1969) Study of molluscan shell ultrastructures. SEM/1969, HT Res Inst, Chicago, pp 205–216Google Scholar
  241. Wise SW Jr (1970) Microarchitecture and mode of formation of nacre (mother-of pearl) in pelecypods, gastropods, and cephalopods. Eclogae Geol Helv 63:775–797Google Scholar
  242. Wise SW Jr, Hay WW (1968a) Scanning electron microscopy of molluscan shell ultrastructures. I. Techniques for polished and etched sections. Trans Am Microsc Soc 87:411–418CrossRefGoogle Scholar
  243. Wise SW Jr, Hay WW (1968b) Scanning electron microscopy of molluscan shell ultrastructures. II. Observations of growth surfaces. Trans Am Microsc Soc 87:419–430CrossRefGoogle Scholar
  244. Wolf KH, Chilingar GV, Beals FW (1967) Elemental composition of carbonate skeletons, minerals and sediments. In: Chilingar GV, Bissel HJ, Fairbridge (eds) Carbonate rocks, development in sedimentology, vol 9 B. Elsevier, Amsterdam New York, pp 23–50Google Scholar
  245. Zylstra U (1972) Histochemistry and ultrastructure of the epidermis and the subepidermal gland cells of the freshwater snails Lymnaea stagnalis and Biomphalaria pfeiferi. Z Zellforsch 130:93–134PubMedCrossRefGoogle Scholar
  246. Zylstra U, Boer HH, Sminia T (1978) Ultrastructure, histology, and innervation of the mantle edge of the freshwater pulmonate snails Lymnaea stagnalis and Biomphalaria pfeifferi. Calcif Tissue Res 26:271–282PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Norimitsu Watabe
    • 1
  1. 1.Electron Microscopy Center, Department of Biology and Marine Science ProgramUniversity of South CarolinaColumbiaUSA

Personalised recommendations